Macroporous ceramics with tailored pore size and shape could be used for well-established and emerging applications, such as molten metal filtration, biomaterial, catalysis, thermal insulation, hot gas filtration and diesel particulate filters. In these applications, unique properties of porous materials were required which could be achieved through the incorporation of macro-pores into ceramics. In this article, we reviewed the main processing techniques which can be used for the fabrication of macroporous ceramics with tailored microstructure. Partial sintering, replica templates, sacrificial fugutives, and direct foaming techniques was described here and compared in terms of microstructures and mechanical properties that could be achieved. The main focus was given to the direct foaming technique which was simple and versatile approach that allowed the fabrication of macro-porous ceramics with tailored features and properties.
foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the foam with open and closed-cell structure, cell size ranging from to having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at for 2 h in air.
Processing techniques for producing microcellular silicon carbide, mullite, and cordierite ceramics have been developed by a reaction method that incorporates a polysiloxane and reactive fillers. The techniques developed in this study offer substantial flexibility for producing microcellular ceramics whereby cell size, cell density, degree of interconnectivity, composition, and porosity can all be effectively controlled. It is demonstrated that the adjustment of filler composition enables the possibility of tailoring the composition and properties of the microcellular ceramics. The present results suggest that the proposed novel processing techniques are suitable for the manufacture of microcellular ceramics with high morphological uniformity.