검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Although cranial electrotherapy stimulation (CES) is reported to have positive effects on mental functions such as depression and sleep improvement, detailed studies regarding awakening, attention and concentration among brain waves reflecting brain activity are lacking. Objective: To examine the effects of cranial electrotherapy stimulation (CES) on various electroencephalograms (EEGs) reflecting brain activities. Design: Randomized controlled clinical trial (single blind) Methods: This study selected 30 healthy adult women in their 20s who volunteered for this experiment. A total of 30 subjects were randomly assigned to three groups (Sham group, 0.5 Hz CES group, and 100 Hz CES group). EEGs were measured before and after the single CES, and the results were compared and analyzed. Results: The relative theta, alpha, and gamma waves indicated no significant differences in the interaction effects between time and group. The relative fast alpha wave only showed significant differences in the interaction effects between time and group in P4. The relative slow beta wave only indicated statistically significant differences in the interaction effects between time and group in T3 and T4. The relative mid and fast beta waves showed statistically significant differences in the interaction effects between time and group in all areas. Conclusions: These results suggest that a CES of 0.5 Hz awakens consciousness and has a positive influence on brain activity, while a CES of 100 Hz has a positive influence on thinking activity accompanying mental load during concentrating on one subject.
        4,000원
        3.
        2015.12 구독 인증기관 무료, 개인회원 유료
        The widely accepted recognition of global environmental problems has resulted in a paradigm shift for research in the hydrosciences. Hydrologic model has played important roles in hydroscience and engineering. However, there are some limitations to deal with real world problems. In this paper, comprehensive review on the current status and major issues on hydrologic models. The sources of model uncertainty were classified and discussed. Finally, model calibration and verification issues were discussed in view of Popperian perspective.
        4,000원
        5.
        2014.12 구독 인증기관 무료, 개인회원 유료
        This review focuses on the hydrological definition and functions of hyporheic zone which has a feature of interaction between surface water and groundwater in natural stream system. This work also investigated how to measure the amount of flow exchange around this zone. As hyporheic zone shows heterogeneous feature due to groundwater level, river bed thickness, and hydraulic conductivity, spatio-temporal variation of interactions between surface-groundwater hydrologic exchange is to be analyzed. The methods to quantify this flow exchange can be classified according to field scale and status, the proper method should be adopted. Especially, Krause et al. (2007), showed that the flow exchange plays an important role in water balance in watershed and can be quantified by using integrated watershed hydrologic modeling.
        4,200원
        6.
        2013.06 구독 인증기관 무료, 개인회원 유료
        The importance of interaction between surface water and groundwater has been increased for the understanding and analyzing hydrological cycle in natural stream system. In this study, the interaction between surface water and groundwater is qualitatively analyzed by using a field measurement of water level and temperature in Guamcheon stream, South Korea. The results show that temperature measurement is necessary to assess the interaction between surface water and ground water not only water level. The interactions between surface water and groundwater in short stream can be analyzed by using this method and the accuracy of stream-groundwater interactions can be enhanced in the concept of hydrological analysis by adding the temperature variation data. Consequently, this method based on field measurement can be expected as a basic procedure for qualitative study on stream-groundwater interactions.
        4,000원
        10.
        2020.05 KCI 등재 서비스 종료(열람 제한)
        In this study, standard precipitation index- based analysis associated with run theory was performed using 53 years’ (1967– 2019) precipitation data to investigate the meteorological drought in Chuncheon. The duration of the meteorological drought in Chuncheon was 8.06 months, magnitude of the drought was -8.21, and average drought depth was -1.08. The drought in May 2014 lasted 21 months until January 2016; the drought scale and average depth was -34.06 and -1.62, respectively. This was the most severe drought in Chuncheon. As a result of drought frequency analysis, the drought scale of May to December in 2014 was estimated to be -16.16, and the return period was estimated to be 300 years. These results are expected to further increase the magnitude and frequency of weather droughts caused by climate change. Therefore, it is critical to prepare appropriate structural measures.
        11.
        2018.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.
        12.
        2017.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.
        13.
        2015.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism – Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than –30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.
        14.
        2015.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Magnetic reconnection is a fundamental process occurring in a wide range of astrophysical, heliospheric and laboratory plasmas. This process alters magnetic topology and triggers rapid conversion of magnetic energy into thermal heating and nonthermal particle acceleration. Efforts to understand the physics of magnetic reconnection have been made across multiple disciplines using remote observations of solar flares and in-situ measurements of geomagnetic storms and substorms as well as laboratory and numerical experiments. This review focuses on the progress achieved with solar flare observations in which most reconnection-related signatures could be resolved in both space and time. The emphasis is on various observable emission features in the low solar atmosphere which manifest the coronal magnetic reconnection because these two regions are magnetically connected to each other. The research and application perspectives of solar magnetic reconnection are briefly discussed and compared with those in other plasma environments.
        15.
        2011.11 KCI 등재 서비스 종료(열람 제한)
        In this study, the method of estimating hydrologic information (water depth, submerged period etc.) on the proper selection of construction point and scale as well as vegetation type suggested for the design of natural riparian rehabilitation structure. Long-term comprehensive watershed model SWAT-K(Korea) was applied to this purpose. Flow duration analysis was conducted to analyze the hydrologic characteristics of Pyungchang watershed at which the 'bangtul' construction method was tested. For this purpose 20 years (1989-2008) rainfall runoff analysis was carried out. Based on the simulated daily streamflow data, flow duration curve was made to analyze the flow characteristics, and the water depth hydrograph was made to analyze the water depth distribution at the cross section. Finally, the information for the selection of proper vegetation according to the submerged period is suggested.
        16.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        In Jeju island, runoff has frequently happened when the rainfall depth is over a threshold value. To simulated this characteristic rainfall-runoff model structure has to be modified. In this study, the TRSM (Threshold Runoff Simulation Method) was developed to overcome the limitations of SWAT in applying to the hydrologic characteristics of Jeju island. When the precipitation and soil water are less than threshold value, we revised the SWAT routine not to make surface/lateral or groundwater discharge. For Hancheon watershed, the threshold value was set as 80% of soil water through the analysis of rainfall-runoff relationship. Through the simulation of test watershed, it was proven that TRSM performed much better in simulating pulse type stream flow for the Hancheon watershed.
        17.
        2009.09 KCI 등재 서비스 종료(열람 제한)
        In Jeju island, the surface runoff characteristics are quite different from those of inland. Most of streams show dried characteristics by means of large portion of recharge which goes to the deep aquifer. For this reason, the accurate estimation of hydrologic components by using watershed model like SWAT is very difficult. On the other hand, the integrated SWAT-MODFLOW model is able to simulate the complex runoff structure including stream-aquifer interaction, spatial-temporal groundwater recharge and so on. The comprehensive results of Pyoseon region in Jeju island show that the amount of groundwater discharge to stream is very small, but it might be added to the discharge into the sea. Statistical analysis shows that SWAT-MODFLOW's results represent better than SWAT's. Also, SWAT-MODFLOW produces a reasonable water budget which shows a quite similar pattern of observed one. This result proves that the integrated SWAT-MODFLOW can be used as a proper tool for hydrologic analysis of entire Jeju island.