Enhancing income for small-scale farmers in developing countries, is one of the major concerns for governments and many stakeholders. This is attributed by the fact that, a majority of smallscale farmers in the region are characterized by low income earners caused by agronomic related challenges, such as low productivity of input factors. In addressing this challenge, the purpose of this study was to assess the impact of outgrower scheme on its members’ income, using the propensity score matching approach. Through this approach the study assessed cross-sectional data, collected from small-scale tea farmers in the Mufindi district, founded in Tanzania. Results of the assessment on the impact of outgrower scheme on its members, suggest that the scheme has a negative and insignificant impact on its members’ income. This implies that, the outgrower scheme does not meet its intended objective of raising the income of its members, due to failure of improving quality as well as quantity of tea produced in the study area.
Wind turbines are designed and analyzed using simulation tools capable of predicting the coupled dynamic loads and responses of the system. In this paper, an overview of the capabilities of a Computer-Aided Engineering (CAE) tool called FAST or Fatigue, Aerodynamic, Structures, and Turbulence in modeling wind turbines in different depths of water will be presented. Different offshore wind turbine support systems structures will be discussed. These support systems are classified into three categories according to the water depth, namely, shallow water, translational water and deep water depths. This paper will be focusing on the support structures used in translational and deep water depths only. This will also be focusing on incorporating hydrodynamic loading for multimember structures using FAST through its hydrodynamic loading module, Hydrodyn. Also, a quantitative comparison of th*e responses of different floating platforms will be tackled.
Laser pyrolysis is a very suitable method for the synthesis of a wide range of nanoparticles. A pilot unit based on this process has been recently developed at CEA. This paper reports results showing the possibility to produce SiC and nanoparticles at rates of respectively 1 and 0.2 kg/h and also the possibility to adjust the mean grain size of the particles and their structure by changing the laser intensity and reactants flow rates. First tests of liquid recovery have been also successfully performed to limit the risks of nanoparticles dissemination in the environement during their recovery.
Sewage Pipe Renewal (SPR) method rehabilitate pipeline by forming a PVC profile inside the pipe by using a winding machine without excavating the soil above the pipe which lowers the cost of the rehabilitation. This study will investigate the effects of varying the pipe’s diameter to its wall thickness ratio. The dimensions for the diameter and minimum wall thickness of the non-reinforced concrete pipe will be based from ASTM C14. The finite element analysis software, ABAQUS, will be used to model and perform the analysis for the composite pipes. To account for the soil-pipe interaction, soil springs will be used as the bedding support to hold the pipe in place. Additionally, three soil types will be used to compare the behavior of the pipe with different diameter to thickness ratios. The results from the finite element analysis will be shown in tables and plotted into graphs and a concluding remarks will be provided.
It has been proven in recent studies that for monosymmetric I-section beams, in considering bending moment diagrams caused by any combination of applied end moments and transverse loads acting at the shear centre, the lowest critical lateral torsional buckling moment does not necessarily correspond to uniform bending. This finding is different from the intuitive expectation that researchers have that for lateral torsional buckling of thin walled beams, the lowest critical lateral torsional buckling moment always corresponds to a uniform bending moment diagram. To determine the applicability of the findings stated, considering stepped beams, this study will be focusing on the comparison of the lateral torsional buckling strength trends in monosymmetric I-beams having doubly stepped and compact cross section. Several loading conditions will be applied to see the effect of different moment diagrams having different inflection points on the lateral torsional buckling strength of stepped beams. The study will be made using the finite element program, ABAQUS. The study will investigate stepped beams having monosymmetric ratios ranging from 0.5 to 0.9. These ratios correspond to varying bottom flange width while keeping the top flange width unchanged. Both elastic and inelastic analysis will be carried out for this study. Finally, the findings for this study will be shown using illustrative figures and conclusions will be made.