Humulus japonicus (HJ) is a widely used herbal medicine for pulmonary tuberculosis, hypertension, leprosy, and venomous wounds in Asia, particularly in China. Although HJ has certain physiological activities, such as longitudinal bone growth, antioxidation and alleviation of rheumatism, its anticancer activities, other than in colorectal and ovarian cancer, are yet to be studied. In this study, we investigated the anti-cancer activity and mechanism of methanol extracts of HJ (MeHJ) against human FaDu hypopharyngeal squamous carcinoma cells. MeHJ suppressed FaDu cell viability without affecting normal cells (L929), which was demonstrated using the MTT and Live & Dead assays. Furthermore, MeHJ effectively inhibited colony formation of FaDu cells, even at non-cytotoxic concentrations, and significantly induced apoptosis through the proteolytic cleavage of caspase-9, -3, -7, poly (ADP-ribose) polymerase and through the downregulation of BCL-2 and upregulation of BAX in FaDu cells, as determined by DAPI staining, flow cytometry, and western blot analyses. Collectively, these findings suggest that the inhibitory effects of MeHJ on the growth and colony formation of oral cancer cells may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeHJ has the potential to be used as a natural chemotherapeutic drug against human oral cancer.
This study was carried out to investigate the physicochemical characteristics of cultivated cereals by Phellinus linteus mycelium. Also, we investigated the content of free sugar, organic acid, free amino acid, mineral and fatty acid of cultivated cereals by P. linteus mycelium. The major free sugars were determined the glucose, maltose, and fucose by HPLC. The content of total free sugars was the highest in cultivated red rice by P. linteus mycelium at 36oC. The content of fucose was the highest in cultivated red rice by P. linteus mycelium at all cultivation temperatures. The organic acids were identified oxalic acid, malic acid, citric acid, and succinic acid, as in the case of free sugar, higher contents of organic acids were observed in the cultivated cereals by P. linteus mycelium than control. There was no significant difference in the mineral content between the control and cultivated cereals by P. linteus mycelium. Sixteen kind of free amino acid were detected in cultivated cereals by P. linteus mycelium. And the content of total free amino acids were higher in the cultivated cereals by P. linteus mycelium than the control. And essential amino acids showed significantly differences between control and cultivated cereals by P. linteus mycelium. Fatty acids were detected with seven kinds of fatty acids, and the major fatty acid was determined the linoleic acid by GC-MS. The content of linoleic acid was higher in the cultivated cereals by P. linteus mycelium than the control.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder that deprives the patient of memory, is associated mainly with extracellular senile plaque induced by the accumulation of amyloid β protein (Aβ). Silybum marianum (Asteraceae; SM) is a medicinal plant that has long been used in traditional medicine as a hepatoprotective remedy owing to its antioxidant and anti-inflammatory activities. The present study examined the methanol extract of the aerial parts of SM for neuroprotection against Aβ (25-35)-induced neuronal death in cultured rat cortical neurons to investigate a possible therapeutic role of SM in AD. The primary cortical neuron cultures were prepared using embryonic day 15 to 16 SD rat fetuses. Cultured cortical neurons exposed to 10 μM Aβ (25-35) for 36 h underwent neuronal cell death. At 10 and 50 μg/mL, SM prevented Aβ (25-35)-induced neuronal cell death and apoptosis in cultured cortical neurons. Furthermore, SM inhibited the Aβ (25-35)-induced decrease in anti-apoptotic protein, Bcl-2, and the increase in the proapoptotic proteins, Bax and active caspase-3. Cultured cortical neurons exposed to 1 mM N-methyl-D-aspartate (NMDA) for 14 h induced neuronal cell death. SM (10 and 50 μg/mL) prevented NMDA-induced neuronal cell death. These results suggest that SM inhibited Aβ (25-35)-induced neuronal apoptotic death via inhibition of NMDA receptor activation and that SM has a possible therapeutic role in preventing the progression of neurodegeneration in AD.
Vitis amurensis, Aralia cordata, and Glycyrrhizae radix have been widely used as oriental medicinal plants in Korea, China and Japan and found to possess anti-oxidative and anti-inflammatory activities. A previous study demonstrated a protection of an ethanol extract (SSB) of a mixture of three medicinal plants of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix against β amyloid protein-induced memory impairment. The current study was conducted to investigate the neuroprotective effect of SSB against ischemiainduced brain injury. Transient focal cerebral ischemia was induced by 2 hr middle cerebral artery occlusion followed by 24 hr reperfusion (MCAO/reperfusion) in rats. Oral administration of SSB (5, 10 and 25 mg/kg) 30 min before and 1 h after MCAO, and 1 h after reperfusion reduced MCAO/ reperfusion-induced brain infarct and edema formation. SSB also inhibited development of behavioral disabilities in MCAO/reperfusion-treated rats. Exposure of cultured cortical neurons to 500 μM glutamate for 12 hr resulted in neuronal cell death. SSB (1-10 μg/mL) inhibited glutamateinduced neuronal death, elevation of intracellular calcium concentration ([Ca2+]i), and generation of reactive oxygen species (ROS). These results suggest that the neuroprotective effect of SSB against ischemia-induced brain damage might be associated with its anti-excitotoxic activity and that SSB may have a therapeutic role for prevention of neurodegeneration in stroke.
Background : Recently, hair loss, which has been regarded as a mere means of middle-aged men due to stress and environmental pollution. The market for hair loss in Korea is about four trillion won and it is growing continuously. It is mainly made by mixing natural extracts such as medicinal plant. The purpose of this study was to investigate the effects of ethanol extracts of Houttuynia cordata Thunb. whole plant and Calendula officinalis L. flower extracts on the growth of fibroblasts, dermal papilla cells and lipid precursors, I want to try to make a materialization. Methods and Results : The cytotoxicity of each sample extracts treated with 50%, 100%, and 500 μg to fibroblasts, cell-viability were 107.3%, 109.6%, and 128.2%, respectively. The cytotoxicity of each sample to the dermal papilla cells was not observed. And the lipid differentiation of the lipogenic precursor cells which regulates the hairegeneration by secretion of the platelet derived growth factor. The 70% ethanol extracts of H. cordata whole plant and C. officinalis flower were showed promotes the hair growth activity. The lipolysis rate was significantly increased with increasing treatment concentration Conclusion : As a result of this study, in-vitro hair growth activity of herbal medicines for hair treatment material development was not shown to be toxic to each cell. And 70% ethanol extract of H. cordata whole plant stimulated lipid precursor cells inducing differentiation. As a result, the 70% ethanol extracts of H. cordata whole plant and C. officinalis flower have potential to developing hair-related product.
Background : Ischemic stroke is a common cause of adult disability and death worldwide. Excessive oxidative stress is an important pathogenic mechanism in ischemic stroke. Major reduction of endogenous antioxidative systems increases production of free radicals inducing peroxidation of lipid, protein, and nucleic acid. 1,3-Dipalmitoyl-2-oleoylglycerol (DPOG) is a triglyceride found in oils from various natural sources such as palm kernels, sunflower seeds and rice bran. We found DPOG as an active constituent of rice bran oil. In the present study, we investigated neuroprotective effect of DPOG derived from rice bran oil on excitotoxicity in cultured neurons and on ischemic brain injury in rats. Methods and Results : Transient focal ischemic brain damage was induced by 2 h middle cerebral artery occlusion followed by 24h reperfusion (MCAO/reperfusion) in rats. After MCAO/reperfusion, the infarct and edema volume of brain tissue was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining methods. Glutathione concentration and lipid peroxidation rate were measured in brain tissue. The expression levels of phosphorylated mitogen activated proteins kinases (MAPKs), inflammatory factors, and anti-apoptotic and pro-apoptotic proteins in brain tissue were detected by Western blot. Cerebral cortical neuronal cells were cultured in 15-days-old fetus. Cortical neurons were incubated with 1 mM N-methyl-D-aspartate (NMDA) for 14 h to produce excitotoxicity. Cell viability was measured by MTT assay. DPOG (1-5 mg/kg) significantly reduced MCAO/reperfusion-induced infarction and edema formation, neurological deficits, and brain cell death. Depletion of glutathione level and lipid peroxidation induced by MCAO/reperfusion were inhibited by administration of DPOG. The increase of phosphorylated MAPKs, inflammatory factors, and proapoptotic proteins and the decrease of antiapoptotic protein in ischemic brain were significantly inhibited by treatment with DPOG. DPOG (0.1-10 uM) inhibited 1 mM NMDA-induced neuronal cell death in cultured cortical neurons. Conclusion : From the above results, the present study provides an evidence that DPOG derived from rice bran oil might be effectively applied for the treatment of ischemic stroke.
Background : Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive memory loss, cognitive impairment and personality defects accompanied by diffuse structural abnormalities in the brain. The major pathological hallmarks of AD include beta amyloid (Aß) protein deposition, presence of neurofibrillary tangles and neurodegeneration of cholinergic neurons. Aß, a 39-43 amino acid proteolytic fragment of amyloid precursor protein, is the major constituent of the senile plaques. Rice bran, the major byproduct of the rice milling industry, is the source of a high quality vegetable oil. Rice bran oil (RBO) has attracted much medicinal attention for its strong hypocholesterolemic properties because of its balanced fatty acid composition and high levels of antioxidant phytochemicals such as oryzanols, tocopherols and tocotrienols. The present study aims to investigate the protective effect of RBO against Aß (25-35)-induced neurotoxicity in in vitro and in vivo. Methods and Results : Memory impairment was produced by intracerebroventricular (i.c.v) microinjection of 15 nmol Aß (25-35) and measured by passive avoidance test in ICR mice. Glutathione concentration, lipid peroxidation rate and acetylcholine esterase activity were measured in mice brain. The expression levels of phosphorylated mitogen activated proteins kinases (MAPKs), inflammatory factors, and anti-apoptotic and pro-apoptotic proteins in mice brains were detected by Western blot. Cerebral cortical neuronal cells were cultured from 15-days-old fetus. Cortical neurons were incubated with 10 μM Aß (25-35) for 36 h. Cell viability was measured by MTT assay. Chronic treatments of RBO (0.1-1 ml/kg, 8 days, p.o.) protected against memory impairment induced by Aß (25-35). Depletion of glutathione level, lipid peroxidation and increased acetylcholine esterase activity by the treatment with Aß (25-35) were inhibited by administration of RBO. The increase of phosphorylated MAPKs, inflammatory factors, and proapoptotic proteins and the decrease of antiapoptotic protein in Aß (25-35)-administered mice brain were significantly inhibited by treatment with RBO. RBO (0.1-5ul/ml) inhibited 10μM Aß (25-35)-induced neuronal cell death in cultured cortical neurons. Conclusion : The present study suggests the role of RBO as a promising therapeutic for neurodegenerative diseases like AD and stroke.
Background : Rice bran is the outer brown layer of the rice grain and produced when rice is milled. The basic components of rice bran are fiber, lipids, amino acids, vitamins, and minerals. The oil extracted from this bran is called rice bran oil. Although whole rice bran in itself does not have anti-cholesterol properties, its oil offers significant benefits. Ischemic stroke is a major cause of morbidity and mortality worldwide. The cessation or critical reduction of blood flow in brain during acute stroke results in deprivation of the oxygen and glucose supplies, which can produce a local brain ischemia and injury. It is well established that excitotoxicity, a type of neurotoxicity evoked by elevated extracellular glutamate level, is a primary contributor to ischemic neuronal death. The present study aims to investigate the neuroprotective effect of Rice bran oil (RBO) on ischemic brain injury in rats and on excitotoxicity in cultured neurons. Methods and Results : Transient focal ischemic brain damage was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/reperfusion) in rats. After MCAO/reperfusion, the infarct and edema volumes of brain tissues were measured using 2,3,5-triphenyltetrazolium chloride (TTC) staining methods. The expression levels of phosphorylated mitogen activated proteins kinases (MAPKs), inflammatory factors, and anti-apoptotic and pro-apoptotic proteins in brain tissue were detected by Western blot. Primary cortical neuronal cultures were prepared using SD rat fetuses on embryonic days 15. Cortical neurons were treated with N-methyl-D-aspartate (NMDA) (1 mM) for 14 h to produce neuronal cell death. Cell viability was measured by MTT assay. RBO inhibited the formation of infartion and edema in MCAO/reperfusion–induced ischemic brains. The increase of phosphorylated MAPKs, inflammatory factors, and proapoptotic proteins and the decrease of antiapoptotic protein in ischemic brains were significantly inhibited by treatment with RBO. RBO (0.01-1ul/ml) inhibited 1 mM NMDA-induced neuronal cell death in cultured cortical neurons. Conclusion : These results suggest that RBO might be a promising therapeutic for neurodegenerative disease such as stroke.
The present study investigated an ethanol extract (SSB) of a mixture of three medicinal plants of Vitisamurensis, Aralia cordata, and Glycyrrhizae radix for possible neuroprotective effects on neurotoxicity induced byAmyloid β protein (Aβ) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cor-tical neurons to 15μM Aβ (25-35) for 36h induced neuronal apoptotic death. At 1-30㎍/㎖, SSB inhibited neuronal death,elevation of intracellular calcium concentration ([Ca²+]i), and generation of reactive oxygen species (ROS) induced by Aβ(25-35) in cultured cortical neurons. Memory impairment and increase of acetylcholinesterase activity induced by intra-cerebroventricular injection of mice with 16nmol Aβ (25-35) was inhibited by chronic treatment with SSB (25, 50 and100㎎/㎏, p.o., for 8 days). From these results, it is suggested that antidementia effect of SSB is due to its neuroprotectiveeffect against Aβ (25-35)-induced neurotoxicity and that SSB may have a therapeutic role in preventing the progression ofAlzheimer’s disease.