The purpose of this study was to investigate the effect of heel off stairway walking exercise on the increase of muscle activity and balance activity of the ankle joint muscles
in university students with functional ankle instability. The conservative treatment for the control group consisted of stairway walking (n=10) and the experimental group consisted of heel off stairway walking (n=11). The therapeutic intervention of the control and experimental groups was performed a total of 12 exercise sessions, 3 times per week for 4 weeks. To compare the two groups, the level of ankle disability was assessed by using the EMG, BT4 and Pedoscan in pre-treatment and post-treatment. Muscle activity increased in both the experimental groups and control groups in each group, however there was no significant difference between the groups. Balance ability did not show any significant difference. This study demonstrates that heel-off stairway walking is effective in significantly increasing muscle activity, however did not significantly improve balance ability.
Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of 700°C-1000°C for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of 900°C, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.
The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.
The present study was planned to analyze the nutritional quality, microbial counts and fermentative acids in Italian ryegrass (IRG) 80% and alfalfa 20% (IRG-HV) mediated silage inoculated with lactic acid bacteria (LAB) as a probiotic strain for 3 months. Crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF), total digestible nutrient (TDN) and In-vitro dry matter digestibility (IVDMD), lactic acid bacteria (LAB), yeast and fungi counts and fermentation metabolites such as lactic acid, acetic acid and butyric acids were analyzed. The result shows that the nutritional quality and metabolite profiles of silage were significantly improved with LAB. For microbial counts, LAB showed dominant followed by yeast as compared with control silage. The pH of the silage also reduced significantly when silage inoculated with LAB. The result confirmed that silage preparation using different crops with L. plantarum inoculation is most beneficial for the farmers.
The aim of present study was to improve the quality of silage using lactic acid bacteria (LAB) and chlorella as a supplement. Italian ryegrass (IRG) mediated silage was prepared with lactic acid bacteria (L. plantarum) and different concentration of chlorella. We analyzed the nutritional profiles such as crude protein (CP), acid detergent fiber (ADF) neutral detergent fiber (NDF), total digestible nutrient (TDN) and in-vitro dry matter digestibility (IVDMD), microbial counts and fermentative acids such as lactic acid, acetic acid and butyric acid in the control and experimental silage after three months. It shows increased crude protein content and also maintains the rest of nutritional values as compared with control silage. LAB inoculation with chlorella as supplementation slightly reduced the pH of the silage. In addition, it increased the fermentative acids production as compared with control silage and inhibits the undesired microbial growth especially fungi in the silage. Therefore, we suggest that LAB inoculation and chlorella supplementation to the IRG mediated silage could be improved the nutritional quality of the silage which is an intrinsic feature for the application in the preparation of animal feeds and functional foods.
The recent development in genetic assisted selection (combining traditional- and genome assisted selection method) and reproduction technologies will allow multiplying elite cow in Hanwoo small farm. This review describes the new context and corresponding needs for genome assisted selection schemes and how reproductive technologies can be incorporated to get more genetic gain for cow genetic improvement in Hanwoo. New improved massive phenotypes and pedigree information are being generated from commercial farm sector and these are allowing to do genetic evaluation using BLUP to get elite cows in Korea. Moreover cattle genome information can now be incorporated into breeding program. In this context, this review will discuss about combining the reproductive techniques (Multiple Ovulation Embryo Transfer; MOET) and genome assisted selection method to get more genetic gain in Hanwoo breeding program. Finally, how these technologies can be used for multiplication of elite cow in small farm was discussed.
Urokinas type plasminogen activator (uPA) has been used as a therapeutic agent for treating human diseases such as thrombosis. Attempts to transgenically overexpress the uPA in animal bioreactors have been hampered due to side effects associated with this functional protein hormone on homeostasis. Recently, chicken has been emerged as a potential candidate for use as bioreactor to produce proteins of pharmaceutical importance. Since this species has low homology uPA sequence with mammals, we hypothesized that chicken could be used as a potential bioreactor for production of human uPA. In this study, using replication‐defective Murine Leukemia Virus (MLV)‐based retrovirus vectors encapsidated with Vesicular Stomatitis Virus G Glycoprotein (VSV‐G), we attempted to make transgenic chicken expressing human uPA (huPA). The recombinant retrovirus was injected beneath the blastoderm of non‐incubated chicken embryos (stage X, at laying). After 21 days of incubation (at hatching), all of the 38 living chicks that assayed, were found to express the vector‐encoded huPA gene in various organs and tissues, which was under the control of the Rous Sarcoma Virus (RSV) or Cytomegalovirus (CMV) promoter. Using specific primer set for huPA, PCR and RTPCR analyses of gDNA isolated from these samples demonstrated these chickens were transgenic for huPA. Furthermore, successful germ line transmission of huPA transgene was confirmed and next generation whole body huPA transgenic chickens were also produced. We also assayed huPA protein titer in blood (17.1 IU/ml) and eggs (4.4 IU/ml) of whole body huPA transgenic chicken. Thus, our results demonstrated that chicken could be used as bioreactors to produce huPA.