검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fish skin peptide-loaded liposomes were prepared in 100 mL and 1 L solution as lab scales, and 10 L solution as a prototype scale. The particle size and zeta potential were measured to determine the optimal conditions for the production of fish skin peptide-loaded liposome. The liposome was manufactured by the following conditions: (1) primary homogenization at 4,000 rpm, 8,000 rpm, and 12,000 rpm for 3 minutes; (2) secondary homogenization at 40 watt (W), 60 W, and 80 W for 3 minutes. From this experimental design, the optimal conditions of homogenization were selected as 4,000 rpm and 60 W. For the next step, fish peptides were prepared as the concentrations of 3, 6, and 12% at the optimum manufacturing conditions of liposome and stored at 4ºC. Particle size, polydispersion index (pdI), and zeta potential of peptide-loaded liposome were measured for its stability. Particle size increased significantly as manufacture scale and peptide concentration increased, and decreased over storage time. The zeta potential results increased as storage time increased at 10 L scale. In addition, 12% peptide showed the formation of a sediment layer after 3 weeks, and 6% peptide was considered to be the most suitable for industrial application.
        4,000원
        2.
        2016.10 구독 인증기관·개인회원 무료
        Soybean peptide (SP) exhibited low intestinal absorption at oral administration due to its fragile structure under gastric digestion. Therefore, we have attempted to encapsulate peptide by cross-linkage interaction between positive charged chitosan (CS) or chitosan oligosaccharide (CSO) and negative charged peptide. The CS (or CSO) with SP nanoparticles were prepared by using ultrasonification technique. The objective of this study was to find the optimal processing method by changing concentration, pH, and homogenizing conditions. We measured physicochemical properties such as particle size, zeta-potential, encapsulation efficiency (EE%), release rate (RR) and antioxidant ability of samples. The results showed that the optimal processing method was using 0.5% (w/v) CSO (diluted by pH 3 Acetic acid buffer) mixed with 0.5% (w/v) SP (diluted by pH 6 buffer) by 9:1 ratio. Afterwards, using high-speed mixer at 12,000 rpm for 3 min, and then passed 2 times through an ultrasonicator (50% power, 3 min). In this way for processing, the particle sizes of CSO/SP nanoparticles were approximately 300 nm, zeta-potential were approximately 45 mV. In addition, the EE% and RR of CS/SP nanoparticles was higher than the CSO/SP nanoparticles. The increase in antioxidant ability of SP was attributed to the affected by CS/CSO microcapsules. In conclusion, this research can befoundation for the manufacturing process of CS/SP nanoparticles, and it was expected that the future application of this nanoparticle in food matrix.
        3.
        2016.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Food freezing preservation is an important process due to its high quality and long shelf-life. In order to improve the quality of frozen sweet potato stem, the freezing rate, thawing, and packaging method was optimized by the determination of physical properties. There was no significant difference among the treatment of freezing rate. Further, the drip loss of sweet potato stem was higher at a relatively fast freezing rate (immersion freezing) than at slow freezing rate (natural convection freezing at -20 or -40oC). For the comparison of packaging methods, the aircontaining packaged sweet potato stem had the lowest significant differences from the result of color, pH, and hardness. From the result of the drip loss, the high frequency and microwave using thawing samples were more effective than room temperature and water thawing. Therefore, fast freezing and thawing rate with air-containing package were recommended to obtain the better quality of sweet potato stem.
        4,000원