본 연구에서는 vitamin C를 넣어 발효시킨 오징어 액젓을 조미용도로 활용하기 위해 발효 과정 중 아미노산함량 변화, 염도별 이화학적 특성, 오징어 액젓과 시판 저염간장 과의 관계양상을 파악하였다. 발효 중 총 아미노산은 증가 하였으며, 그중 Asp, Pro, Gly, Ala, Val, Ile, Leu의 함량은 발효 기간에 따라 증가하였다. 소금 첨가량에 따라 오징어 액젓의 염도와 당도는 증가하였으며, 수분과 pH는 감소하는 것으로 나타났다. 색도의 경우 소금을 넣을 경우 명도, 적색도, 황색도 모두 감소하였고, 소금 첨가량에 따른 차이는 있으나 특별한 경향을 보이지는 않았다. 동일한 염도의 오징어 액젓과 시판 저염간장의 관능검사 결과, 색은 모든 염도에서 차이를 보였으며, 향은 1, 2, 4%에서 차이를 보 였다. 짠맛은 염도가 높아질수록 기호도가 높아지는 경향 을 보였다. 오징어 액젓의 단맛은 가장 낮았으며, 신맛은 가장 높은 기호도를 가졌다. 오징어 액젓과 저염간장의 기 호도 양상은 83.84~94.51%의 설명력을 가지며, 향과 색의 기호도는 저염간장보다 오징어 액젓이 높았고, 감칠맛은 반대로 저염간장이 높은 것으로 나타났다. 또한 감칠맛과 단맛은 전반적 기호도와 양의 상관관계를 가지는 것으로 조사되었다. 오징어 액젓의 염도가 높아질수록 저염간장군과 가까워지는 것으로 나타나 일정 염도를 가질 때 간장과 유사한 용도로 사용이 가능할 것으로 보인다.
In this study, we investigated the change of physical properties associated with the temperature of vegetable mixed oil and fat in order to produce vegetable oil and fat suitable for plant meat production. The canola oil and coconut oil were mixed at various weight ratios, and the phase change temperatures by the ratio of two oils were measured using the differential scanning calorimetry (DSC). Storage modulus (G'), loss modulus (G") and viscosity were measured using a rheometer at 20-40°C and 0.4 Hz-100 Hz. Storage modulus (G') at constant frequency (10 Hz) was measured in a continuous section of 10-50°C. As the coconut oil content increased, the peak of the melting point moved to the lower side. The viscosity was higher in order of canola oil, mixed oil, and coconut oil, and the viscosity showed a tendency to decrease as the temperature increased. In the liquid state, it showed a tendency to increase after the value of storage modulus (G') and loss modulus (G") decreased from 0.634 Hz-1 Hz. The conversion time point of storage modulus (G') of continuous temperature change is consistent with the melting point temperature of DSC, as the passed start at 10°C, storage modulus (G') increased with an exception of canola oil. Using these results, we will pursue to produce a mixed plant oil applicable to the production of vegetable meat.
Salt is generally used for food seasonings and preservations as a common ingredient. However, excess salt intake has generated health issues such as high blood pressure, osteoporosis, stroke, and heart diseases. Recently, desires and interests of low-salt cooking have been increased among people who want healthy diets. The aim of study was to compare the physicochemical characteristics of a fermented squid sauce added with vitamin C and commercial low-salt soy sauces. Thawed and crushed squids were fermented until the solid squid became liquid at 25°C with an addition of 5% (g/g) vitamin C. Then, fermented squid sauce was heated at 100°C for 30 min and filtered. All samples were measured in multiple aspects of amino acid nitrogen, salt, sugar and water content, pH, chromaticity and brown color, and sensory test. In the results, color values showed no significantly difference between all the samples (p>0.05). Water content value of the fermented squid sauce was the highest among samples. Brown color, salt contents and sugar contents of the fermented squid sauce were significantly different than other low salt soy sauces with an exception of the sauce made with functional salt. These results showed a similar tendency as those of sensory evaluation. As conclusion, the possibility of fermented squid sauce added with vitamin C showed a possibility as a candidate of low-salt soy sauce.
The red ginseng is known to have effects on antioxidativity and cytotoxicity. Nanoscale active substances have various advantages such as improved bioavailability and permeation ability into the cell. However, few studies conducted with the nanoparticles of red ginseng due to its low yield rate and difficulty of manufacturing the product in pilot scale. This study, therefore, investigated the size effects of ultra-fine powder of red ginseng on antioxidativity and cytotoxicity. Red ginseng powder (6, 8, or 158 μm) prepared using a pilot scale was provided by a local company. Antioxidativity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays, and cytotoxicity was tested by methylthiazolyl tetrazolium (MTT) assay. The results of DPPH and ABTS radical electron donating ability IC50 of red ginseng were ranged from 2.27 to 3.34 mg/ml and 2.94 to 3.09 mg/ml, respectively, which were not significantly different between all samples. However, the results of cytotoxicity clearly showed a pattern of decreased toxicity in 6 and 8 μm power compared to 158 μm powder. Unexpectedly, particle sizes of red ginseng did not significantly affect antioxidativity. It is believed that these were related to the process of pilot scale production. These phenomena are also believed to be caused by aggregation of low size power particle that increases water holding capacity. From our result, it is concluded that this range of particle size of red ginseng affected the reduction of cytotoxicity.
Excessive salt intake in body induces health risks resulting high blood pressure or heart diseases. Therefore, the low salt concentration and sale tasted food is needed by means of the modification of manufacturing process. The purpose of this study was to study the effect of inhomogeneous salt localization in bread to enhance the saltiness encapsulated salt. The 0, 0.5, 1, 1.5, and 2.0% of liposome encapsulated salt (LS) was added into the baking of white pan bread. The final salt concentration was adjusted at 2% by addition of salt. After baking the bread, the moisture content, loaf volume, fermentation rate, color, texture analysis, salt release rate and sensory test were measured. From this study, moisture content has no significant difference between control and treatments (p>0.05), except for 2.0% LS. Lightness of all treatments was higher than control (p<0.05), whereas, there were no significant difference in hardness (p>0.05). From the sensory test, the bread added 2.0% LS was showed the highest value from the salty taste. Moreover, it is related to the highest release rate of salt was represented at 2.0% LS. In conclusion, the salty intensity of bread can be enhanced by the salt localization using encapsulation of salt.
Recently, semi-dried sweet potato is popular as a natural snake for children’s dessert. The drying condition was optimized to obtain high quality of sweet potato by oven drying process. The mashed yellow and chestnut sweet potato was dried using the oven drier at different temperature (50, 60, 70, and 80°C) then evaluated for the moisture content, appearance observation, texture properties, and sugar contents and sensory test in every 2, 6 and 12 hours. During the dehydration and drying process, the ending point of moisture content divided in three zone from 0-2 hour, 4-6 hour and 8-12 hour. The moisture content was dramatically decreased from 0 hour - 8 hour, but after 8 hour there is no significant decrease. Yellow sweet potato dried at 80°C for 6 hours was investigated as good product base on the sensory test, hardness value, and color appearances as compared to chestnut potato.