검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2013.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Expanded graphite (EG) was prepared using a drying process for application as an oil-adsorbent: the morphology, expansion volume, and oil absorption capacity of the EG were investigated. The expanded volume of the EG increased with an increasing reaction time and heat treatment temperature. The oil adsorption capacity of the EG was 45 g of n-dodecane per 1 g of EG. It is noted that the drying process of EG is a useful technique for a new oil-adsorbent.
        3,000원
        2.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, iron oxide (Fe3O4) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and Fe3O4-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.
        3,000원
        3.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, expanded graphite (EG)-reinforced poly(ethylene terephthalate) (PET) nanocomposites were prepared by the melt mixing method and the content of the EG was fixed as 2 wt%. The effect of multi-walled carbon nanotubes (MWCNTs) as a co-carbon filler on the electrical and mechanical properties of the EG/PET was investigated. The results showed that the electrical and mechanical properties of the EG/PET were significantly increased with the addition of MWCNTs, showing an improvement over those of PET prepared with EG alone. This was most likely caused by the interconnections in the MWCNTs between the EG layers in the PET matrix. It was found that the addition of the MWCNTs into EG/PET led to dense conductive networks for easy electron transfers, indicating a bridge effect of the MWCNTs.
        4,000원
        5.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of aminized multi-walled carbon nanotubes (NH-MWNTs) on the mechanical interfacial properties of epoxy nanocomposites was investigated by means of fracture toughness, critical stress intensity factor (KIC), and impact strength testing, and their morphology was examined by scanning electron microscope (SEM). It was found that the incorporation of amine groups onto MWNTs was confirmed by the FT-IR and Raman spectra. The mechanical interfacial properties of the epoxy nanocomposites were remarkably improved with increasing the NH-MWNT content. It was probably attributed to the strong physical interaction between amine groups of NH-MWNTs and epoxide groups of epoxy resins. The SEM micrographs showed that NH-MWNTs were uniformly embed and bonded with epoxy resins, resulted in the prevention of the deformation and crack propagation in the NH-MWNTs/epoxy nanocomposites.
        4,000원
        6.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.
        3,000원