We studied formation of nanostructured -Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.
Interpenetrating phase composites of -Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.