검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2006.09 구독 인증기관·개인회원 무료
        We studied formation of nanostructured -Cu composites under shock wave conditions. We investigated the influence of preliminary mechanical activation (MA) of Ti-B-Cu powder mixtures on the peculiarities of the reaction between Ti and B under shock wave. In the MA-ed mixture the reaction proceeded completely while in the non-activated mixture the reagents remained along with the product . titanium diboride. The size of titanium diboride particles in the central part of the compact was 100-300 nm.
        3.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized was in situ synthesized in copper matrix through self-propagating high temperature synthesis (SHS) with high-energy ball milled Ti-B-Cu elemental mixtures as powder precursors. The size of particles in the product of SHS reaction decreases with time of preliminary mechanical treatment ranging from 1 in untreated mixture to 0.1 in mixtures milled for 3 min. Subsequent mechanical treatment of the product of SHS reaction allowed the particles to be reduced down to 30-50 nm. Microstructural change of -Cu nanocomposite during spark plasma sintering (SPS) was also investigated. Under simultaneous action of pressure, temperature and electric current, titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton.
        4,000원
        5.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Interpenetrating phase composites of -Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.
        3,000원