The fuel fabrication facility has been built and is being operated by KAERI since licensing research reactor fuel fabrication in 2004. After almost 20 years of operation, outdated equipment for fabrication or inspection has been replaced by automated, digitalized ones to assure a higher quality of nuclear fuels. However, the generation of a large amount of radioactive waste is another concern for the replacement in terms of its volume and various types of it that should be categorized before disposal. The regulatory body, NSSC (Nuclear Safety and Security Commission) released a notice related to the classification of radioactive wastes, and most accessory equipment can be classified into the clearance levels, called self-disposal waste. In this study, the practice of self-disposal of metal radioactive waste is carried out to reduce its volume and downgrade its radioactivity. For metal radioactive waste, which is expected to occupy the most amount, analysis status and legal limitations were performed as follows: First, the disposal plan was established after an investigation of the use history for equipment. Second, those were classified by types of materials, and their surface radio-contamination was measured for checking self-disposable or not. After collecting data, the plan for the self-disposal was written and submitted to the Korea Institute of Nuclear Safety (KINS) for approval.
This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.
The purpose of this study was to develop synbiotic materials and to apply them to the puffed grain products using electrostatic spraying technology. Lactic acid bacteria were isolated from Kimchi and selected through tests of acid resistance, bile salt resistance and γ-aminobutyric acid (GABA) content. The isolated Lactobacillus brevis CFM21 produced highest GABA production up to a concentration of 926.42 μg/mL when grown in MRS broth containing 0.8% MSG. The possibility of coated grains as a prebiotic material was evaluated Confocal laser scanning micro scopy (CLSM). Rice bran extract containing 2% dextrose, 2% soytone, 0.2% potassium chloride, 0.6% MSG was produced 524.77 μg/mL of GABA. Citrus sinensis oil showed the highest antibacterial activity against Clostridium perfringens Electrostatic spray showed much higher effectiveness than conventional spray in coating the puffed grain product through CLSM. Applying Rice bran culture and Citrus sinensis oil to puffed grain product using electrostatic spray could contribute to promote intestinal health of consumers.
The development of drugs from natural plant sources is at growing interest due to the limitations of chemical drugs in terms of side effects and cost-effective factors of natural medicines. Among the various components contained in natural plant materials, flavonoids are of increasing interest because of their extended biological benefits. Flavonoids are classified into various types according to their structure and possess different activities depending on the structure. In this study, the flavonoids contained in Artemisia, native to Korea were examined and reviewed. HPLC chromatograms of three Artemisia species (Artemisia annua L., Artemisia iwayomogi and Artemisia argyi H.) were examined from published sources and their component analysis by MS data were summarized. The various flavonoids of Artemisia were classified into 12 types according to the main structure, and 10 flavonoids based on various activities were examined. The 10 flavonoids were identified as quercetin, kaempferol, rhamnetin, diosmetin, luteolin, methoxyflavone, catechin, apigenin, malvidin and genkwanin with extensive reported studies till date. The ten flavonoids examined have been reported to be effective in preventing and treating various diseases and exhibit activities such as anti-cancer, anti-inflammatory, antioxidant, antiviral, anti-obesity, anti-diabetic and anti-Alzheimer. The collective results from the reported studies suggest that the three types of Korean native Artemisia, contains various flavonoids with beneficial activities and may have therapeutic effects against diseases.
방울토마토의 수경재배 중 붕소+칼슘+규소 및 칼슘+규소의 복합 엽면시비가 수확 후 품질과 MAP 저장 중 저장성에 미치는 영향을 알아보고자 본 연구를 실시하였다. 엽면시비한 방울 토마토(‘Unicorn’)는 반숙 과상태에서 수확하여 산소투과성 필름으로 포장한 5oC, 11oC, 그리고 24oC에서 25일, 15일, 10일간 저장하였다. 붕소+칼슘+규소 복합처리한 방울토마토가 3가지 저장온도 모두에서 호흡과 에틸렌 발생이 억제되어 MAP 저장중 가장 낮은 생체중 감소와 가장 높은 외관상 품질을 보였다. 수확 후 조사한 방울토마토의 경도, 산도, 비타민 C 함량은 붕소+칼슘+규소 복합처리에서 가장 높았으며, 3가지 온도 모두에서 MAP 저장 후에도 모두 높게 유지되었다. 그러나 과피색, 라이코펜 함량과 당도는 수확 후에는 엽면시비 처리로 차이가 없었으나, 3가지 온도 모두 붕소+칼슘+규소 복합처리에서 가장 낮은 수치를 보였다. 이상의 결과로 볼 때 붕소+칼슘+규소 복합처리는 방울토마토의 수확후 생리 작용을 억제하고 경도, 산도, 비타민 C 함량을 높여 저장성을 향상시키는 것으로 판단되었다
This study was conducted from October 2014 to May 2015 to explore forage production and feed values of Italian ryegrass, Rye and whole crop barley as winter forage crops in the Southern region of Korea. The experimental location was over 10 points for each species and each sampling point area was 1 m² (Width: 1 m × Length: 1 m). Air mean temperature and rainfall in the Southern region of Korea during the experimental period was 6.95 ± 5.75℃ and 70.45 ± 54.68 mm, respectively. Fresh forage yield of Italian ryegrass, the most cultivated forage in the Southern region of Korea, was 44.4 ± 7.0 ton/ha. The percentage of dry matter for whole crop barley was 28.9 ± 7.0%. Crude protein (CP) was higher in Italian ryegrass (10.7 ± 5.3%) while total digestible nutrient (TDN) had the highest value in whole crop barley. Crude protein was not significantly different by location. However, the neutral detergent fiber (NDF), acid detergent fiber (ADF) and total digestible nutrient value of forage from Jeonbuk province were higher than in forage from Gyeongnam province.
The mushrooms have been used as traditional medicines and food resources in many countries. The objective of this study was to determine antioxidant compounds and to evoluate tyrosinase inhibitory activity of extracts from Hypsizigus marmoreus. The pileus and stipe of Hypsizigus marmoreus were extracted with methanol and water, separately. The methanol extract of Hypsizigus marmoreus were fractioned by hexane, chloroform, ethylacetate and buthanol. The concentrations of total polyphenolics and flavonoids in methanol extracts were investigated by colorimetric methods. The concentrations of total polyphenolics and flavonoids in methanol extract of the pileus was higher than methanol extract of the stipe. The DPPH redical scavenging activity of the pileus extract was also higher than stipe extract in methanol extract. The IC50 of DPPH redical scavenging activity of the pileus and stipe in methanol extract were 18 mg/ml and 1 10 mg/ml, respectively. The IC50 of tyrosinase inhibitory activity of the pileus and stipe in methanol extract were 500 mg/ml and 1,000 mg/ml in methanol extract. These results suggest that Hypsizigus marmoreus can be potentially used as a source of natural antioxidant agent in the cosmetic industry as well as the food, pharmaceutical and medicinal industry.