Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.
Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
Hypertension is characterized by excessive renin-angiotensin system activity, leading to blood vessel constriction. Several synthetic compounds have been developed to inhibit renin and angiotensin-converting enzyme (ACE). These drugs often have adverse side effects, driving the exploration of plant protein-derived peptides as alternative or supplementary treatments. This study assessed the phenolic compound and amino acid content and the antioxidant and antihypertensive activity of 5 South Korean staple crops. Sorghum had the highest phenolic compound content and exhibited the highest antioxidant activity. Millet grains, particularly finger millet (38.86%), showed higher antihypertensive activity than red beans (14.42%) and sorghum (17.16%). Finger millet was found to contain a large proportion of branched-chain, aromatic, and sulfur-containing amino acids, which are associated with ACE inhibition. In particular, cysteine content was positively correlated with ACE inhibition in the crops tested (r=0.696, p<0.01). This study confirmed that the amino acid composition was more correlated with the antihypertensive activity of grains than the phenolic compound content. Finger millet mainly contained amino acids, which have higher ACE inhibitory activity, resulting in the strongest antihypertensive activity. These findings underscore the antihypertensive potential of select crops as plant-based food ingredients, offering insight into their biological functions.
Air conditioner filters purify the air of indoor environments by removing air pollutants and supporting the efficiency of the unit’s cooling function. However, an air conditioner filter can become a microenvironment in which some fungi can grow as dust continues to accumulate and favorable humidity conditions are formed. Fungal growth in air conditioner filters could lead to fungal allergies or fungal diseases, in addition to emitting a foul odor. In an effort to understand what species causes this malodorous problem, we investigated the diversity of fungi found in air conditioners. Fungi were sampled from the collected air conditioner filters and grown on DG18 agar media. After purification for pure isolates, species identification was undertaken. Colony morphology was observed on PDA, MEA, CYA, and OA media. Microstructures of fruiting body, mycelia, and spores were examined using a light microscope. Molecular identification was performed by PCR and sequencing of PCR amplicons, and molecular phylogenetic analysis of sequenced DNA markers, including the Internal Transcribed Spacer (ITS), the 28S large subunit of the nuclear ribosomal RNA (LSU rDNA), the β-tubulin (BenA) gene, the Calmodulin (CaM) gene, and the DNA-directed RNA polymerase II subunit 2 (RPB2) gene. Through this identification process, we found two fungal species, Aspergillus miraensis and Dichotomopilus ramosissimus, which are unrecorded species in Korea. We will now report their morphological and molecular features.
One of the important components of a nuclear fuel cycle facility is a hot cell. Hot cells are engineered robust structures and barriers, which are used to handle radioactive materials and to keep workers, public, and the environment safe from radioactive materials. To provide a confinement function for these hot cells, it is necessary to maintain the soundness of the physical structure, but also to maintain the negative pressure inside the hot cell using the operation of the heating, ventilation, and air conditioning (HVAC) systems. The negative pressure inside the hot cells allows air to enter from outside hot cells and limits the leakage of any contaminant or radioactive material within the hot cell to the outside. Thus, the HVAC system is one of the major components for maintaining this negative pressure in the hot cell. However, as the facility ages, all the components of the hot cell HVAC system are also subject to age-related deterioration, which can cause an unexpected failure of some parts. The abnormal operating condition from the failure results in the increase of facility downtime and the decrease in operating efficiency. Although some major parts are considered and constructed in redundancy and diversity aspects, an unexpected failure and abnormal operating condition could result in reduction of public acceptance and reliability to the facility. With the advent of the 4th Industrial Revolution, prognostics and health management (PHM) technology is advancing at a rapid pace. Korea Hydro & Nuclear Power, Siemens, and other companies have already developed technologies to constantly monitor the integrity of power plants and are applying the technology in the form of digital twins for efficiency and safety of their facility operation. The main point of PHM, based on this study, is to monitor changes and variations of soundness and safety of the operation and equipment to analyze current conditions and to ultimately predict the precursors of unexpected failures in advance. Through PHM, it would be possible to establish a maintenance plan before the failure occurs and to perform predictive maintenance rather than corrective maintenance after failures of any component. Therefore, it is of importance to select appropriate diagnostic techniques to monitor and to diagnose the condition of major components using the constant examination and investigation of the PHM technology. In this study, diagnostic techniques are investigated for monitoring of HVAC and discussed for application of PHM into nuclear fuel cycle facilities with hot cells.
농가에서 곤충자원을 활용한 치유농업프로그램의 개발 요구가 증가함에 따라 기존 곤충 돌보기 중심의 치유프로그램과 더불어 활용할 수 있는 야간 곤충채집 활동을 치유농업프로그램으로 개발하 고 시범 적용하였다. 야간곤충채집 활동은 대학생 9명에게 사전에 참여 동의를 획득하고, 전남대학교 학술림(장성)에서 1박 2일간 진행하였다. 18시부터 24시까지 야간 채집 활동과 익일 오전에는 채집한 곤충을 이용한 곤충 표본 제작 활동으로 프로그램을 구성하였다. 프로그램의 효과 분석을 위해 사전 (활동 전), 중간(채집활동 직후), 사후(표본제작 직후)에 뇌파, 맥파 검사 그리고 설문조사를 실시하였 다. 뇌파 분석 결과, 야간 채집활동 직후 뇌파의 기초율동이 향상(10.67→11.44)하였다(p<0.05). 요인 분석을 통한 스트레스 분석 결과, 내적 스트레스는 3.22(사전)→2.96(사후)로 감소(p<0.1)하였고, 문제 수행능력 관련 스트레스는 2.92(중간)→2.70(사후)로 감소하였다. 이러한 결과는 야간 채집 활동 속에 서 이용되는 근육의 움직임이 뇌 기능 향상과 스트레스 감소에 영향을 줄 것으로 생각된다. 참여자가 적은 연구의 한계를 극복하기 위해 향후 연령대별, 성별 등 다양한 참여자를 대상으로 추가적인 채집 프로그램의 개발 및 적용이 필요하다.
단단한 자구를 가진 적색 비모란선인장 ‘Gangjeok’ 품종 은 ‘Isaek’품종을 모본으로, ‘Suyeon’ 품종을 부본으로 하여 2018년에 교배하여 육성하였다. 교배 후 획득한 종자는 조직 배양실에서 기내파종하여 획득한 유묘를 기내에서 삼각주선 인장에 접목하여 ‘1802001’ 등 20계통을 양성하였다. 2019 년에 기내에서 양성한 20계통을 온실에서 삼각주선인장 대목 에 접목하여 재배하면서 ‘1812005’ 계통을 1차 선발하였다. 2020년부터 2022년까지 3차에 걸쳐서 특성을 검정한 후, 농 산물직무육성품종 심의회에서 최종 선발하여 ‘Gangjeok’으 로 명명하였다.‘Gangjeok’ 품종은 편원형의 적색 구를 가진 다. 혹(tubercle)이 돌출된 형태의 모구는 8.4개의 능(rip)을 가지며, 3.5mm 짧은 회색 가시가 발생한다. 정식 10개월 후 ‘Gangjeok’ 품종의 직경은 46.1mm이며, 자구는 평균 18.3 개 발생한다. 2022년 육성계통 평가회에서 ‘Gangjeok’ 품종 은 높은 기호도 점수 4.0을 받았다.
실버 페이스트는 상대적으로 낮은 열처리로 공정이 가능하기 때문에 전자 소자 응용분야에서 유용한 전극 재료이다. 본 연구에서는 은 페이스트 전극에 대기압 플라즈마 제트를 이용하여 전극 표면을 처리 했다. 이 플라즈마 제트는 11.5 kHz 작동 주파수에서 5.5 ~ 6.5 kV의 고전압을 사용하여 아르곤 분 위기에서 생성되었다. 플라즈마 제트는 대기압에서 수행함으로써 인쇄 공정에 더 유용할 수 있다. 플라즈 마 처리시간, 인가된 전압, 가스유량에 따라 전극의 표면은 빠르게 친수성화 되었으며 접촉각의 변화가 관 찰되었다. 또한, 대면적 샘플에서 플라즈마 처리 후 접촉각의 편차가 없었는데, 이는 기판의 크기에 관계없 이 균일한 결과를 얻을 수 있었다는 것을 의미한다. 본 연구의 결과는 대면적 전자소자의 제조 및 향후 응 용 분야에서 적층 구조를 형성하는데 매우 유용할 것으로 기대된다.
Plasma Arc Melter (MSO) system has been developed for the treatment and the stabilization of various kinds of hazardous and radioactive waste into the readily disposable solidification products. Molten salt oxidation system has been developed for the for the treatment of halogen- and sulfurbearing hazardous and radioactive waste without emissions of PCDD/Fs and acid gases. However, PAM system has showed some difficulty in the off-gas treatment system due to the volatilization of radionuclides and toxic metals at extremely high-temperature plasma arc melter and the emissions of acid gases. MSO system has also showed the difficulty in the treatment of spent molten salt into the disposable waste form. Present study discussed the results of organics destruction performance tests for the PAM-MSO combination system, which is proposed and developed to compensate the drawbacks of each system. The worst-case condition tests for the organics destruction were conducted at lowest temperatures and the worst-case condition tests for the retention of metals and radionuclides were conducted at highested temperatures under the range of normal operating condition. For the worst-case organic destruction test, C6H5Cl was selected as a POHCs (Principal Organic Hazardous Constituents) because of its high incinerability ranking and the property of generation of chlorine gases and PCDD/Fs when incompletely destroyed. Simulated concrete waste spiked with 1 L of C6H5Cl was treated and the emissions of 17 kinds of PCDD/Fs and other hazardous gases such as CO, THCs, NOx, SO2 and HCl/Cl2 were measured. For the worst-case condition tests for the retention of metals and radionuclides, Pb and Cs were selected because of its high volatility characteristics. The emissions of PCDD/Fs was extremely lowered than the emission limit and those of other hazardous constituents were below their emission limit. The results of performance tests on the organics destruction suggested that tested PAM-MSO combination system could readily treat PCBs-bearing spent insulation liquid, spent ion-exchange resins used for the treatment of spent decontamination liquid in the decommission process and the concreted debris bearing hazardous organic coating materials. The decontamination factor of Cs and Co were 1.4×105, 1.4×105, respectively. The emisison of Pb was 0.562 ppm. These results suggested that tested PAM-MSO system treated low-level radioactive and pb-bearing mixed waste.
Present study investigated the waste form integrity of melted products generated from PAM-MSO system, which is proposed and developed to compensate the drawbacks of each system. The disposal suitability of the melting solidification products generated from the plasma arc melting treatment of pulverized cement debris spiked by Pb, Cd and Cs, as indicators of typical hazardous metals and radionuclides existed in the low-level mixed waste in the KHNPPs. The final waste form obtained by the test was evaluated for suitability for disposal. The compressive strength was 261.10 MPa, showing much higher values when compared to other waste form products. The compressive strength of both the sample after irradiation with 107 Gy radiation and that after long-term submersion test (90 days) satisfied the disposal criteria. As a result of the leaching test conducted according to the ANS 16.1 test method, it was confirmed that the leaching index satisfies the disposal criteria.