This study investigated the antioxidant characteristics of sweet potato according to different plant parts and drying methods. The sweet potato plant parts were divided into root tubers, stems, stalks, leaves, and tips, and the drying methods were freeze-drying and hot air drying. Total polyphenol and flavonoid contents and radical scavenging activity of the sweet potato plant parts were significantly different depending on the plant parts and drying methods. The total polyphenol content of freeze-dried sweet potato leaves and tips were 52.76 and 46.19 mg chlorogenic acid equivalents/g sample, and the total flavonoid contents were 222.47 and 214.12 mg quercetin equivalents/g sample, respectively, and decreased with hot air drying. DPPH radical scavenging activity was higher in freeze-drying than hot air drying and was significantly different depending on the plant parts. The ABTS radical scavenging activity of freeze-dried sweet potato leaves and tips were 43.48 and 44.68 mg Trolox equivalents/g sample, respectively, and decreased with hot air drying. Therefore, additional studies on the functionality of using by-products from sweet potato cultivation are needed.
The quality and antioxidant characteristics of apios (Apios americana Medikus) according to different harvest periods and steaming treatment were investigated. The quality and antioxidant characteristics of apios were significantly different depending on harvest periods. Total starch contents was higher in 1st harvesting period as 62.32 g/100 g than other harvesting period. The water binding capacity and water solubility index was higher in 1st harvesting period as 228.65 and 11.29% than other harvesting period. The sucrose and total free sugar contents were 3.64~8.67 and 4.49~9.54 g/100 g, respectively. Total polyphenol and flavonoid contents of apios was the highest 2nd and 4th harvesting period at 4.21 mg GAE/g and 611.11 μg CE/g, respectively. DPPH radical scavenging activity was higher in 1st harvesting period as 84.96 mg TE/100 g than other harvesting period, and decreased as the harvest periods were delayed. ABTS radical scavenging activity and ferric-reducing antioxidant power were 43.81~47.89 mg TE/g and 231.20~264.07 mM/100 g, and increased to 50.58~51.44 mg TE/g and 342.55~384.29 mM/100 g after heat treatment. As a result, it is thought that studies on change of quality and physicochemical characteristics according to cultivation characteristics should be preceded for cultivation stability of apios.
영산강 하구는 1981년에 농지 및 농업용수 개발을 위해 하굿둑이 건설되면서 인위적인 변형이 이루어진 시스템으로 하굿둑을 중심으로 담수역과 해수역으로 분리되었다. 하지만 여름철에는 잦은 강우로 인해 수문이 자주 개방되고, 개방 시에 담수가 해수역으로 방류되면서 기수역의 특성을 보이기도 한다. 본 연구에서는 담수 방류의 직접적인 영향을 파악하기 위해 2013년부 터 2015년까지 여름철 동안 담수 방류 전후로 일간 모니터링을 실시하여 하계 식물플랑크톤 크기구조와 환경여건 변화를 파악하고자 하였다. 그 결과, 담수 방류는 급격한 염분감소와 탁 도를 증가시켜 표층의 용존산소도 감소시키는 것으로 나타났다. 다만 조사 전까지 방류가 지 속적으로 이루어진 2014년에는 이미 염분이 감소한 상황이어서 추가적인 방류로 인한 염분의 감소는 나타나지 않았다. 영양염 중에서는 특히 질소성 영양염의 유입이 크게 나타났고, 이로 인해 질소의 상대적 제한 보다는 인이나 규소의 제한 가능성이 크게 나타났다. 식물플랑크톤 생체량 및 크기구조는 연도별로 상이한 결과를 보였으나 결과적으로 담수 방류에 따라 변화를 초래하였고, 방류 후에도 어느 정도 그 경향이 유지되었다. 결론적으로 불규칙적이고 예측이 어려운 담수 방류는 염분, 탁도, 영양염 농도 등의 환경요인뿐만 아니라 식물플랑크톤의 생체 량 및 크기구조를 단기적으로 크게 변화시키는 것으로 나타났다. 이러한 변화는 적조와 같은 유해조류발생(HABs) 뿐만 아니라, 먹이량 및 미세먹이망 변화를 통해 상위소비자 그리고 먹이 망 구조에도 영향을 미칠 수 있을 것으로 사료된다.
Bootleg fashion emerged from the fashion industry after 2010, and has been used across a range of different genres. However, it has yet to be theoretically established; therefore, this study will explain bootleg fashion as a new genre, which will help in the planning and designing of products within domestic fashion brands. The purpose of this study was to examine the characteristics and internal meaning of bootleg fashion as a recently emerged fashion phenomenon that borrows from other brands without permission. The research methodology included a theoretical literature review of fashion sites and related materials and empirical research using case analysis. Results of the analysis of both characteristics and internal meaning of bootleg fashion suggest the following characteristics:ᅠ“unauthorized use of symbolic elements,” “disorganization of boundaries between fashion,” “multiplicity through globalization,” and “newness through deconstruction and recombination.” Internal meanings derived from the analysis were “parody through symbol,” which is seen as “a parody and homage resulting from the unauthorized use of a brand,” while “decomposition through disorganization” is seen as a break-up of the boundaries between different fashions from a mainstreamoriented perspective. A juxtaposition of elements was demonstrated by “playfulness through transformation,” which showed that such fashion cannot coexist with positional transposition. Finally, “spread as a cultural phenomenon” was derived through the diffusion through digital media with DIY culture. As such, bootleg fashion has been reborn as an innovative fashion genre, breaking the taboo of the illegitimate from the past and demonstrating new endeavors.
The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.
Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the capacity to differentiate into various types of cells in the body. Hence, these cells may potentially be an indefinite source of cells for cell therapy in various degenerative diseases including neuronal disorders. For clinical applications of human ES cells, directed differentiation of these cells would be necessary. The objective of this study is to develop the culture condition for the expansion of neural precursor cells derived from human ES cells. Human ES cells were able to differentiate into neural precursor cells upon a stepwise culture condition. Neural precursor cells were propagated up to 5000-fold in cell numbers over 12-week period of culture and evaluated for their characteristics. Expressions of sox1 and pax6 transcripts were dramatically up-regulated along the differentiation stages by RT-PCR analysis. In contrast, expressions of oct4 and nanog transcripts were completely disappeared in neural precursor cells. Expressions of nestin, pax6 and sox1 were also confirmed in neural precursor cells by immunocytochemical analysis. Upon differentiation, the expanded neural precursor cells differentiated into neurons, astrocytes, and oligodendrocytes. In immunocytochemical analysis, expressions of type III β-tubulin and MAP2ab were observed. Presence of astrocytes and oligodendrocytes were also confirmed by expressions of GFAP and O4, respectively. Results of this study demonstrate the feasibility of long-term expansion of human ES cell-derived neural precursor cells in vitro, which can be a potential source of the cells for the treatment of neurodegenerative disorders.
Embryonic stem (ES) cells are known to have an infinite proliferation and pluripotency that are associated with complex processes. The objective of this study was to examine expression of genes differentially regulated during differentiation of human ES cells by suppression subtractive hybridization (SSH). Human ES cells were induced to differentiate into neural precursor cells via embryoid body. Neural precursor cells were isolated physically based on morphological criteria. Immunocytochemical analysis showed expression of pax6 in neural precursor cells, confirming that the isolated cells were neural precursor cells. Undifferentiated human ES cells and neural precursor cells were subject to the SSH. TPX2 (Targeting Protein for Xklp2 (Xenopus centrosomal kinesin-like protein 2)) was identified, cloned and analyzed during differentiation of human ES cells into neural lineages. Expression of TPX2 was gradually down-regulated in embryoid bodies and neural precursor cells relative to undifferentiated ES cells. Targeting Protein for Xklp2 has been shown to be involved in cell division by interaction with microtubule development in cancer cells. Taken together, result of this study suggests that TPX2 may be involved in proliferation and differentiation of human ES cells.
The Gwangju Stream is a major tributary of the Yeongsan River. To maintain environmental and ecological functions in the stream, the flow is secured by natural water from the Mudeung Mountain as well as waters discharged from Lake Juam and the Gwangju sewage treatment plants. A substantial amount of water is supplied into the upper reaches of Gwangju Stream from Lake Juam. To examine the ecological effects of the water input from Lake Juam on the Gwangju Stream, a field survey of phytoplankton community species and an evaluation of water properties was conducted at five stations, from station GJ1 before the inflow to station GJ5 in the lower region. Nutrient levels decreased in the vicinity of the Lake Juam inflow, suggesting that this water inflow can contribute to the reduction of eutrophication in the stream. The phytoplankton community was mainly composed of Bacillariophyceae, Chlorophyceae, and Cyanophyceae, and the community structure was similar to that of the other study sites located near the water inflow regions. The inflow of water from Lake Juam can affect water quality and the phytoplankton community over a limited area, reducingeutrophication and increasing water flow in the Gwangju Stream.