Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
Porcine parvovirus (PPV), a member of the genus Parvovirus, family Parvoviridae, is a significant causative agent in porcine reproductive failure, causing serious economic losses in the swine industry. PPV is a non-enveloped virus and its capsid is assembled from three viral proteins (VP1, VP2, and VP3). The major capsid protein, VP2 is the main target for neutralizing antibodies in PPV. When VP2 was expressed in large amounts, it assembled into virus-like particles (VLPs) similar in size and morphology to the original virions. In this study, we generated the recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) to express the VP2 protein. Expression of the VP2 protein was analyzed by SDS-PAGE and Western blot. The recombinant VP2 protein of approximately 64 kDa was detected by both analyses. The formation of VLP by recombinant VP2 was confirmed through transmission electron microscopy examination. The purified VP2 protein assembled into spherical particles with diameters ranging from 20 to 22 nm.
양서류는 육상과 수상생태계를 연결하는 먹이사슬의 연결자로 진화적 생태적 지이를 갖는다. 양서류의 배아와 유생은 모체와 독립되어 수환경 내에서 초기발생 및 성장하기 때문에 수환경에 존재하는 다양한 화학물질에 직접적으로 노출될 수 있다. Azole계열 항곰팡이제는 농업 및 의료용으로 널리 사용되는 화학물질로서 농지, 하수처리장 등으로 부터 수계로 유입된다. 최근, 양서류에서 이러한 azole계 물질에 의한 기형유발, 내분비계장애 효과가 증가하고 있다. 본 소고에서는 azole계 물질의 양서류 독성을 파악하고 azole계 물질의 안전한 이용을 위한 가이드라인을 제공하고자 azole계열에 속하는 imidazole, triazole, thiazole, oxazole, pyrazole 항곰팡이 물질이 양서류의 발생, 분화, 생식 등에 미치는 영향에 대해 최근까지의 연구결과를 정리하였다.
Estrogen sulfotransferase (EST) is a cytosolic enzyme that catalyzes the sulfo-conjugation of estrogens at the 3-hydroxyl position. Sulfated estrogens lose their ability to interact with the estrogen receptor (ER). Previous studies have reported that testicular expression of EST is under the regulation of LH and androgen. In an effort to understand the biological significance of estrogens in the testis, we analyzed the EST gene expression in the developing mouse testis and Leydig cells and its regulation by estrogen receptor alpha (ERα). Male mice at postnatal day (PND) 1, 7, 14, 28, and 56 and ERα flox/flox Cyp17iCre male mice which show deletion of ERα specifically in Leydig cells were used for this study. Testes and Leydig cells isolated from these mice were subjected to quantitative RT-PCR analysis and immunohistochemistry. In addition, 17β-estradiol (E2), ERα-selective agonist PPT, ERβ -selective agonist DPN, and ER antagonist ICI 182,780 were treated in primary adult Leydig cell culture. These cultured cells were subjected to quantitative RT-PCR analysis. In testis, EST mRNA level was excessively low by PND 14 and markedly increased from puberty (PND 28) onward. In the interstitium, EST mRNA was not detected by PND 14 but considerably expressed from PND 28 onward. EST immunoreactivity was moderate in the interstitium by PND 14. Strong EST immunoreactivity was found in the interstitium from PND 28 onward. In ERαflox/flox Cyp17iCre mouse testis and Leydig cells, EST mRNA level was significantly lower than wild type (ERαflox/flox). In primary adult Leydig cell culture, the expression of EST mRNA was increased by E2 and PPT, but was not changed by DPN. The expression of EST in the testis is developmentally regulated. In adult Leydig cells, EST could play an important role in the steroidogenesis by modulating the activity of estrogens. Estrogen as well as LH and androgen may play a role in the regulation of EST expression in Leydig cells via ERα signaling.