검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        4.
        2023.11 구독 인증기관·개인회원 무료
        The International Atomic Energy Agency (IAEA) Safety Fundamentals No. SF-1 Safety Principle 7 states that people and the environment, present and future, must be protected against radiation risk. Therefore, it is important to evaluate the safety of radioactive waste repositories on a longterm time scale to ensure future safety. However, IAEA-TECDOC-767 states that the long-term time scale of interest means that the risk or dose to future individuals cannot be reliably predicted because it relies on assumptions. Therefore, evaluating the safety of long-term time scales should use safety indicators that are less dependent on assumptions. Radiotoxicity is one of the safety indicators that represent an inherent risk from radioactive waste. It has been mainly used to show the time required until the hazard presented by waste decreases to that of natural uranium ore and is easy to use in communication with the public. There are several methods for calculating Radiotoxicity. Radioactivity is multiplied by a Dose Conversion Factor (DCF) to be expressed in Sv units, or radioactivity be divided into Maximum Permissible Concentration (MPC) to be expressed in m3 units as the amount of water needed to dilute the radionuclide to the permitted level. It is also often made dimensionless through comparison with reference materials like uranium ore. Radiotoxicity varies in size several times, even if it is a waste of similar origins and components, depending on the Radiological variable (e.g., Annual Limitation Intake (ALI), Dose Conversion Factor (DCF), Maximum Permissible Concentration (MPC), Activity). Therefore, this study was conducted to determine whether there was a significant difference when different radiological variables were substituted. This study compares and analyzes their differences using various MPCs or DCFs used in each country. In addition, this study analyzes radionuclides that influence radiotoxicity with several radiological variables. This study introduces the effects of substituting different radiological variables.
        5.
        2023.11 구독 인증기관·개인회원 무료
        In the case of nuclear projects, when developing a new reactor type, it is necessary to confirm the reactor type, secure the safety, and especially obtain the construction permit approval of the licensing authority for construction. Schedule management is necessary to carry out nuclear projects, and progress rate management of project progress management is largely composed of three elements: scope management, cost management, and resource management. However, in the case of the small modular reactor (SMR) project currently being carried out, it is difficult to calculate the progress rate including budget and resources due to the nature of the project. Therefore, in the SMR project, it took two years from the beginning to prepare the integrated project master schedule (IPMS) to prepare the draft, and then two revisions were made over a year and a half. In this SMR project, we will consider the entire construction period such as design, purchase and production, construction, commissioning, and operation in terms of scope management. The entire document list was created using the document review and approval sheet created at the beginning of the design. In the PMIS (Project Management Information System), the number of approved documents was calculated by comparing the list of engineering documents. In the purchase production part, the main core equipment such as the primary system nuclear steam supply system (NSSS), the secondary system turbine and condenser, and the man machine interface system (MMIS) are managed. Purchasing and manufacturing management shall be managed so that major equipment can be delivered in a timely manner in accordance with the schedule for delivery of equipment in the IPMS. In order to prevent delays in the start of production, it is necessary to minimize the waiting time for work through advance management tasks such as insurance of drawing, stocking of materials, availability of production facilities, etc. In this way, we decided to carry out the schedule management for the design, purchase and manufacturing part in the SMR project first, and the installation, construction and commissioning part will be prepared for the future schedule management.
        1 2 3 4