To compensate for the critical shortage of human organs for allotransplantation, xenotransplantation studies using genetically modified pigs are being performed in Korea. Two types of pigs that are used are α1,3-galactosyltransferase gene knockout (GalT KO) pigs and GalT KO+hCD46 (human complement regulatory protein) pigs. The present study measured the gestation time, birth weight, daily growth rate, and heart weight of both kinds of transgenic minipigs. The gestation period for both types of pigs was 117∼119 days. There was no difference in the body weight of GalT KO (—/+) and GalT KO (—/—) piglets, but GalT KO+hCD46 (—hCD46+/+) pigs were significantly heavier at birth than were GalT KO+hCD46 (—hCD46+/—hCD46+) pigs. During the first 10 weeks of life, the daily weight gain of GalT KO+hCD46 (—hCD46+/—CD46+) piglets, which are considered the optimal type for xenotransplantation, was 0.19 kg. The weight of hearts from GalT KO piglets up to two months of age was affected more by body weight than by age. Transgenic pigs showed no differences in gestation period or reproductive ability compared with normal pigs. These results comprise basic data that may be used in xenotransplantation studies and transgenic animal production in Korea.
Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopolysaccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs(miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 μg/ml of E. coli (Ec) LPS or 5 μg/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875- 3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.
The patent ductus arteriosus (PDA) is a vascular structure connecting the proximal descending aorta to the roof of the main pulmonary artery, near the origin of the left branch pulmonary artery. Transcatheter closure has become the treatment of choice for most cases of PDA in both children and adults; however, measurement of the exact size and morphology of the shunt in adult cases using only contrast fluoroscopy is difficult. We report on a case of a 49-year-old woman who underwent transcatheter closure of PDA with intravascular ultrasound (IVUS) guideance. In the current case, IVUS is feasible and helpful for measuring the exact size and shape of the PDA.