본 연구는 서식 환경에 따라 구분된 3화기 미국흰불나방(Hyphantria cunea Drury)을 숙주로 하는 기생파리의 종과 기생률의 차이를 확인했다. 조사 기간은 2023년 10월 24일부터 29일까지로, 방제를 실시한 서천군 국립생태 원과 방제를 실시하지 않은 군산시 근린공원에서 숙주인 미국흰불나방의 유충을 채집하였다. 유충은 기주식물 인 수국을 급여하여 실내 개별 사육하였다. 각 조사지에서 미국흰불나방의 기주식물은 국립생태원에서 8종, 근린공원에서 6종이 확인되었다. 총 숙주 380마리 중 기생파리는 106개체로 총 27.9%의 기생률을 보였고(유충 92개체, 미동정 알 14개체), 기생률은 근린공원이(39.6%) 국립생태원(12.5%)보다 더 높았다. 성충의 우화율은 63.0%로, 동정 결과 4속 92개체가 나타났다. 전체 종과 가장 많은 개체가 확인된 Exorista japonica (Townsend, 1909)의 조사지에 따른 유충 생존율과 성충 우화율은 모두 근린공원이 더 높은 것으로 확인 되었다. 조사결과 E. japonica가 미국흰불나방의 생물적 방제제로 유효할 것이라 판단되며, 근린공원에서의 더 높은 기생파리 유충 생존율과 성충 우화율을 통해 인간에 의한 교란이 적은 환경에서 기생파리를 이용한 미국흰불나방 방제가 더 효과적일 것이라고 고려된다. 또한 숙주의 생존율과 기생파리의 우화율을 비교한 결과 해충 방제가 이뤄지지 않는 환경에서 천적 개체군이 유지될 가능성이 더 높다고 사료 된다.
Molten Salt Reactor (MSR) is one of the 4th generation nuclear power systems which is its verified technology in physically and chemically. Among the various salts used for MSR system, the eutectic composition of NaCl-MgCl2 system maintains the liquid state at around 450°C, in the same time, it has high solubility for nuclear fuel chlorides. This characteristic has high advantage for lowering the operating temperature for the MSR, which could reduce the problem of hightemperature corrosion by salt for structural materials significantly. In particular, since MgCl2 has the similar standard reduction potential with nuclear fuel, is used as a surrogate for, many basic researches have been conducted for verifying characteristic of MgCl2. It is well-known that main short-advantage of MgCl2 is hygroscopic properties. MgCl2 changes to MgCl2-xH2O state easily by absorbing moisture in air condition. The hydrated MgCl2 is producing MgOHCl by thermally decomposing at high temperature, the formed MgOHCl corrodes structural materials, even small amount of MgOHCl gives significant damage. Therefore, the purification of MgCl2 has been required for long-term operation of MSR using MgCl2 as a base salt. In this study, the purification of eutectic composition salt for NaCl-MgCl2 has been mainly performed by considering its thermodynamic properties and electrochemical characteristic, and the experimental results have been discussed.
Pyroprocessing technology has emerged as a viable alternative for the treatment of metal/oxide used fuel within the nuclear fuel cycle. This innovative approach involves an oxide reduction process wherein spent fuel in oxide form is placed within a cathode basket immersed in a molten LiCl-Li2O salt operating at 923 K. The chemical reduction of these oxide materials into their metallic counterparts occurs through a reaction with Li metal, which is electrochemically deposited onto the cathode. However, during process, the generation of Li2O within the fuel basket is inevitable, and due to the limited reduction efficiency, a significant portion of rare earth oxides (REOx) remains in their oxide state. The presence of these impurities, specifically Li2O and REOx, necessitates their transfer into the electrorefining system, leading to several challenges. Both Li2O and REOx exhibit reactivity with UCl3, the primary electrolyte within the electrorefining system, causing a continuous reduction in UCl3 concentration throughout the process. Furthermore, the formation of fine UO2 powder within the salt system, resulting from chemical reactions, poses a potential long-term operational and safety concern within the electrorefining process.Various techniques have been developed to address the issue of UO2 fine particle removal from the salt, utilizing both chemical and mechanical methods. However, it is crucial that these methods do not interfere with the core pyroprocessing procedure. This study aims to investigate the impact of Li2O and REOx introduced from the electrolytic reduction process on the electrorefining system. Additionally, we propose a method to effectively eliminate the generated UO2 fine powder, thereby enhancing the long-term operational stability of the electrorefining process. The efficiency of this proposed solution in removing oxidized powder has been confirmed through laboratory-scale testing, and we will provide a comprehensive discussion of the detailed results.
Molten salt reactor (MSR) uses fluoride or chloride based molten salt as a coolant of the system, and fuel materials are dissolved in the molten salt, therefore it can be act as both coolant and nuclear fuel. A few issues have arisen from early-stage research and development program of MSR from Oak Ridge National Laboratory, including corrosion of structural materials and fission product management. For investigating the effect of additives on corrosion of structural materials, Mg(OH)2 and MgCl2*6H2O are added into the NaCl-MgCl2 eutectic salt. Prepared chloride salt is injected into the autoclave in the glove box, as well as corrosion coupons for candidate structural materials for molten chloride salt reactor, SS316, Alloy 600, and C-276 are also prepared. The temperature is set as 700°C. After 500 h corrosion experiment, the samples are taken out from the autoclave, and they are analyzed with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SS316 samples show weight loss with all salt conditions, while Alloy 600 and C-276 show weight gain after the corrosion experiment.
As temporary storage facilities for spent nuclear fuel (SNF) are becoming saturated, there is a growing interest in finding solutions for treating SNF, which is recognized as an urgent task. Although direct disposal is a common method for handling SNF, it results in the entire fuel assembly being classified as high-level waste, which increases the burden of disposal. Therefore, it is necessary to develop SNF treatment technologies that can minimize the disposal burden while improving long-term storage safety, and this requires continuous efforts from a national policy perspective. In this context, this study focused on reducing the volume of high-level waste from light water reactor fuel by separating uranium, which represents the majority of SNF. We confirmed the chlorination characteristics of uranium (U), rare earth (RE), and strontium (Sr) oxides with ammonium chloride (NH4Cl) in previous study. Therefore, we prepared U-RE-SrOx simulated fuel by pelletizing each elements which was sintered at high temperature. The sintered fuel was again powdered by heating under air environment. The powdered fuel was reacted with NH4Cl to selectively chlorinate the RE and Sr elements for the separation. We will share and discuss the detailed results of our study.
Molten Salt Reactor (MSR) is one of Generation-IV nuclear reactors that uses molten salts as a fuel and coolant in liquid forms at high temperatures. The advantages of MSR, such as safety, economic feasibility, and scalability, are attributed from the fact that the molten salt fuel in a liquid state is chemically stable and has excellent thermo-physical properties. MSR combines the fuel and coolant by dissolving the actinides (U, Th, TRU, etc.) in the molten salt coolant, eliminating the possibility of a core meltdown accident due to loss of coolant (LOCA). Even if the molten salt fuel leaks, the radioactive fission products dissolved in the molten salt will solidify with the fuel salt at room temperature, preventing potential leakage to the outside. MSR was first demonstrated at ORNL starting with the Aircraft Reactor Experiment (ARE) in 1954 and was extended to the 7.4 MWth MSRE developed in 1964 and operated for 5 years. Recently, various start-ups, including TerraPower, Terrestrial Energy, Moltex Energy, and Seaborg, have been conducting research and development on various types of MSR, particularly focusing on its inherent safety and simplicity. While in the past, fluoride-based molten salt fuels were used for thermal neutron reactors, recently, a chlorine-based molten salt fuel with a relatively high solubility for actinides and advantageous for the transmutation of spent nuclear fuel and online reprocessing has been developing for fast neutron spectrum MSRs. This paper describes the development status of the process and equipment for producing highpurity UCl3, a fuel material for the chlorine-based molten salt fuel, and the development status of the gas fission product capturing technologies to remove the gaseous fission products generated during MSR operation. In addition, the results of the corrosion property evaluation of structural materials using a natural circulation molten salt loop will also be included.
Interests in molten salt reactor (MSR) using a fast spectrum (FS) have been increased not only for having a high power density but for burning the high-level waste generated from nuclear power plants. For developing the FS-MSR technologies, chloride-based fuels are considered due to the advantage of higher solubility of actinides and lanthanides over fluoride-based salts. Despite significant progress in development of MSR technology, the manufacturing technology for production of the fuel is still insufficiently understood. One of the option to prepare the MSR fuel is to use products from pyroprocessing where oxide form of spent nuclear fuel is reduced into metal form and useful elements can be collected via electrochemical methods in molten salt system at high temperature. In order to chlorinate the products into chloride form, previous study used NH4Cl to chlorinate U metal into UCl3 in an airtight reactor. It was found that the U metal was completely chlorinated into chloride forms; however, impurities generated by the reaction of NH4Cl and reactor wall were found in the product. Therefore, in this work, the air tight reactor was re-deigned to avoid the reaction of reactor wall by insertion of Al2O3 crucible inside of the reactor. In addition, the reactor size was increased to produce UCl3 over 100 g. Using the newly designed reactor, U metal chlorination experiments using NH4Cl chlorinating agent were performed to confirm the optimal experimental conditions. The detailed results will be further discussed.
The effect of Li2O addition on precipitation behavior of uranium in LiCl-KCl-UCl3 has been investigated in this study. 99.99% LiCl-KCl eutectic salt is mixed with 10wt% UCl3 chips at 550°C in the Pyrex tube in argon atmosphere glove box, with 10 ppm O2 and 1 ppm H2O. Then, Li2O chunks are added in mixed LiCl-KCl-UCl3 and the system has been cooled down to room temperature for 10 hours to form enough UO2 particles in the salt. The solid salt has been taken out from the glove box, and cut into three sections (top, middle and bottom) by low-speed saw for further microscopic analysis. Three pieces of solid salt are dissolved in deionized water at room temperature and the solution is filtered by a filter paper to collect non-dissolved particles. The filter paper with particles is baked in vacuum oven at 120°C for 6 hours to evaporate remaining moisture from the filter paper. Further analysis was performed for the powder remaining on the filter paper, and periphery of the powder (cake) on the filter paper. Scanning electron microscopy (SEM), electron diffraction spectroscopy (EDS), and X-ray powder diffraction (XRD) are adopted to analysis the characteristic of the particles. From SEM analysis, the powders are consisted of small particles which have 5 to 10 m diameter, and EDS analysis shows they are likely UO2 with 23 at. % of uranium and 77 at. % oxygen. Cake is also analyzed by SEM and EDS, and needle like structures are widely observed on the particle. The length of needle is distributed from 5 to 20 m, and it has 6 to 10 at. % of chlorine, which are not fully dissolved into deionized water at room temperature. From XRD analysis, the particles show the peak position of UO2, and the result is well matched with the SEM-EDS results. We are planning to add more Li2O in the system for fully reacting uranium in UCl3, and compare the results to find the effect of Li2O concentration on UO2 precipitation.
The effect of oxidation time on the characteristics and mechanical properties of spent nuclear fuel cladding was investigated using Raman spectroscopy, tube rupture test, and tensile test. As oxidation time increased, the Raman peak associated with the tetragonal zirconium oxide phase diminished and merged with the Raman peak associated with the monoclinic zirconium oxide phase near 333 cm−1. Additionally, the other tetragonal zirconium oxide phase peak at 380 cm−1 decreased after 100 d of oxidation, whereas the zirconium monoclinic oxide peak became the dominant peak. The oxidation time had no effect on the tube rupture pressure of the oxidized zirconium alloy tube. However, the yield and tensile stresses of the oxidized nuclear fuel cladding tube decreased after 100 d of oxidation. The results of the scanning electron microscopy and transmission electron microscopy were represented with the in-situ Raman analysis result for the oxide characteristics generated on the cladding of spent nuclear fuel.
The origin of Fe oxide deposition on zirconium oxide with UV irradiation has been investigated in this study. After 7 day corrosion in the flowing autoclave, Fe based oxide is formed on the zirconium oxidewith UV irradiation at 260°C, 6 MPa DI water. Zircaloy-4 coupon is irradiated with a 200 mW·cm−2 UV, and the dissolved oxygen level is maintained below 100 ppb, and dissolved hydrogen concentration is maintained as 2.5 ppm. Zircaloy-4 coupon supplied from Westinghouse is used for this study. MULTEQ version 4.0 developed by EPRI is adopted to simulate how ions dissolved in water can generate deposits on the zirconium oxide with UV irradiation. ICP-OES data after 30 d corrosion in the flowing loop experiment is used for input file for MULTEQ simulation. The system temperature is set as 260°C, and 2,592 L of water is considered the total amount water into the autoclave (0.06 mL·min−1, 30 d). Total numbers of simulation run is set as 8, and the system pH at 260°C is 6.06. Oxidation potential after run #8 is −0.44 V. From MULTEQ simulation, most Fe is existed as Fe(OH)3 and Fe(OH)2, and Fe ions can also exist, but no Fe metal observed. 5.09 × 10−6 ppm (9.73 ppb) of Fe2+, 2.81 × 10−6 ppm FeOH+, and 3.77 × 10−9 ppm Fe(OH)3are in the system. It can be concluded Fe is existed as ion or hydroxide form in the solution. Two precipitates are found from MULTEQ simulation, First, NiO(s) = 5.21 × 10−5 g (52.1 μg), NiFe2O4 = 8.06 × 10−5 g (80.6 μg), and still they are negligible amount. The total concentration of Fe in the electrolyte is the summation of each Fe species concentration and it is equal to 2.69×10−4 ppm. This value is equivalent to 0.269 μg·kg−1 in the solution. The total water volume of the 30 d experiment is 2,592 L (considering water flow from high-pressure pump), so the amount of Fe from ICP-OES data and MULTEQ results in 2,592 L electrolyte is 697.2 μg. This value is order of magnitudes higher than the mass of Fe from the deposits, which was already an upper estimate based on the assumptions. This clearly shows that Fe ions dissolved in the electrolyte can be the source of Fe3O4 on Zr oxide during corrosion with UV irradiation.
A cat who is a 15-year-old and spayed female visited an animal clinic with severe coughing symptoms. Since the cat’s coughing symptoms had worsened from the age of 10 and X-rays showed a bronchial pattern in the lungs, it was diagnosed as Chronic Obstructive Pulmonary Disease (COPD). She received three injections of stem cells isolated from the amniotic membrane on days 0, 7, and 23. Although there was no improvement in the clinical findings on the x-ray, the number of coughing was significantly reduced. In addition, even after long-term follow-up post treatment for a month, she was stable with almost no coughing.
Three different cats who had chronic kidney disease (CKD) were treated for more than one month with fluid therapy in an animal clinic. Although this long-term treatment and hospitalization, there was no clinical improvement in clinical signs as well as serum biochemical indexes including blood urea nitrogen (BUN), creatinine (CREA), and phosphate (PHOS). All cases were then injected three times with allogeneic stem cells through an intravenous route for treatment on Day 0, 7, and 14 or 30. On the same day, clinical observation and blood tests for serum biochemistry were conducted together. Upon administrating stem cells to the CKD cats, clinical conditions and the indexes of BUN and CREA were clinically improved within normal ranges. Additionally, one of the cats who had the renal cysts presented clinical improvement with showing decreased cysts size than before.