검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        2.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the quality of sow pork was compared with commercial pork to evaluate sow pork as raw meat material for processing. Texture, cooking loss, color, pH, water, lipid, fatty acid, volatile profiles, and sensory characteristics of 3 parts (tenderloin, loin, hind leg) of sow and commercial pork were analyzed. In texture analysis, sow pork had significantly higher shear force compared to commercial pork (tenderloin: sow 143.19 N, commercial 107.79 N; loin: sow 173.62 N, commercial 120.65 N; hind leg: sow 211.76 N, commercial 112.80 N) (p<0.05). There were significant differences in cooking loss, color, and pH, but they differed by part. A total of 49 volatile compounds were identified, and there were significant differences in 22 volatile compounds. In the case of hexanal (one of the warmed-over flavors), which was detected on the largest scale, the relative concentration was significantly higher in the tenderloin of commercial pork (p<0.05). On the other hand, no differences were reported by sensory analysis for hardness, off-flavor, juiciness, oiliness, appearance, taste, and acceptability between cooked sow and commercial pork. This study provides a database on the quality of sow pork by parts, which is considerable to develop proceed meat products using sow meat.
        4,000원
        3.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Rock discontinuities in underground rock behave as weak planes and affect the safety of underground structures, such as high-level radioactive waste disposal and underground research facilities. In particular, rock discontinuities can be a main flow path of groundwater and induce large deformation caused by stress disturbance or earthquakes. Therefore, it is essential to investigate the characteristics of rock discontinuities considering in-situ conditions when constructing highlevel radioactive waste disposal, which needs to assure the long-term safety of the structure. We prepared Hwang-Deung granite rock block specimens, including a saw-cut rock surface, to perform multi-stage direct shear tests as a preliminary study. In the multi-stage direct shear tests, we can exclude possible errors induced by different specimens for obtaining a full failure envelope by using an identical specimen. We applied the initial normal stress of 3 MPa on the specimen and increased the normal stress to 5 and 10 MPa step by step after peak shear stress observation. We obtained the mechanical properties of saw-cut rock surfaces from the experiments, including friction coefficient and cohesion. Additionally, we investigated the effect of filling material between rock discontinuities, assuming the erosion and piping phenomenon in the buffer material of the engineering barrier system. When the filling material existed in the rock surfaces, the shear characteristics deteriorated, and the effect of bentonite was dominant on the shear behavior.
        5.
        2023.11 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS), composed of spent nuclear fuel, canister, buffer and backfill material, and near-field rock, plays a crucial role in the deep geological repository for high-level radioactive waste. Understanding the interactions between components in a thermo-hydro-mechanical -chemical (THMC) environment is necessary for ensuring the long-term performance of a disposal facility. Alongside the research project at KAERI, a comprehensive experimental facility has been established to elucidate the comprehensive performance of EBS components. The EBS performance demonstration laboratory, which installed in a 1,000 m2, consists of nine experimental modules pertaining to rock mechanics, gas migration, THMC characteristics, buffer-rock interaction, buffer & backfill development, canister corrosion, canister welding, canister performance, and structure monitoring & diagnostics. This facility is still conducting research on the engineering properties and complex interactions of EBS components under coupled THMC condition. It is expected to serve as an important laboratory for the development of the key technologies for assessing the long-term stability of engineered barriers
        6.
        2023.05 구독 인증기관·개인회원 무료
        Geologic disposal at deep depth is an acceptable way to dispose of high-level radioactive waste and isolate it from the biosphere. The geological repository system comprises an engineered barrier system (EBS) and the host rock. The system aims to delay radionuclide migration through groundwater flow, and also, the flow affects the saturation of the bentonite in the EBS. The thermal conductivity of bentonite is a function of saturation, so the temperature in the EBS is directly related to the flow system. High-temperature results in the two-phase flow, and the two-phase flow system also affects the flow system. Therefore, comprehending the influencing parameters on the flow system is critical to ensure the safety of the disposal system. Various studies have been performed to figure out the complex two-phase flow characteristics, and numerical simulation is considered an effective way to predict the coupled behavior. DECOVALEX (DEvelopment of COupled models and their VALidation against EXperiments) is one of the most famous international cooperating projects to develop numerical methods for thermo-hydro-mechanicalchemical interaction, and Task C in the DECOVALEX-2023 has the purpose of simulating the Fullscale Emplacement (FE) experiment at the Mont-Terri underground research laboratory. We used OGS-FLAC, a self-developed numerical simulator combining OpenGeoSys and FLAC3D, for the simulation and targeted to analyze the effecting parameters on the two-phase flow system. We focused on the parameters of bentonite, a key component of the disposal system, and analyzed the effect of compressibility and air entry pressure on the flow system. Compressibility is a parameter included in the storage term, defining the fluid storage capacity of the medium. While air entry pressure is a crucial value of the water retention curve, defining the relation between saturation and capillary pressure. From a series of sensitivity analyses, low compressibility resulted in faster flow due to low storage term, while low air entry pressure slowed flow inflow into the bentonite. Low air entry pressure means the air easily enters the medium; hence the flow rate becomes lower based on the relativity permeability definition. Based on the sensitivity analysis, we further investigate the effect of shotcrete around the tunnel and excavation damaged zone. Also, long-term analysis considering heat decay of the radioactive waste will be considered in future studies.
        7.
        2022.10 구독 인증기관·개인회원 무료
        A rock joint exerts significant influences on the rock mass behavior in terms of thermal, hydraulic, and mechanical (THM) aspects. Therefore, its features should be thoroughly investigated in various rock mechanical projects, such as high-level radioactive waste (HLW) disposal repository, tunnel, and rock slope. Meanwhile, it is essential to guarantee the safety of the disposal repository for a very long period of time and it should prepare measures for various risks, which may possibly encounter during that period. In general, direct shear tests for a rock joint are conducted to investigate the possibility of frictional sliding of the joint under specific loading conditions or to predict the shear strength of the joint. However, it is necessary to consider whether regional sliding of a rock joint or reactivation of a fault might occur due to an earthquake or redistribution of the in-situ stresses because the expected operation period of the repository is quite long, and various situations can happen. A slide-hold-slide test for a rock joint is a practical test that can investigate the time-dependent behavior or frictionalhealing of a joint. The test enables an estimation of the stress build-up phenomenon after strain energy release in a quantitative manner. In this study, a series of slide-hold-slide tests were carried out in order to investigate the characteristics. Joint specimens were made from mortar, which is a rock-like and brittle material, so as to consider the effect of joint roughness and to secure the reproducibility of the tests. At the same time, mechanical conditions as well as thermal and hydraulic were applied in order to take the environment of the repository into account. As a result, the behavior of shear stress recovery was observed, and the effects of THM coupled condition on the recovery were investigated. This study presents fundamental results of the experiments, and further research outcomes, including time dependent behavior of a joint, will be presented sequentially.
        8.
        2022.10 구독 인증기관·개인회원 무료
        In high-level radioactive waste disposal, a high temperature is generated from the canister containing the waste in the engineered barrier, while groundwater flows into the buffer system from the host rock. The temperature increase and groundwater inflow result in the water phase change and saturation variation. Saturation change is related to the thermal conductivity of buffer material; hence the phase change and saturation strongly interact with the temperature evolution. The complex coupled behavior affects the stability of the whole disposal system, and the security of the repository is critical to human-being life. However, it is difficult to predict the long-term coupled behavior in the disposal system due to the considerable field-test scale, and therefore a numerical simulation is a suitable method having repeatability and cost-effectiveness. DECOVALEX is an international cooperating project for developing numerical methods and models for thermo-hydro-mechanical-chemical (THMC) interaction. DECOVALEX has a four-year cycle with various topics. At the current phase, Task C aims to simulate the full-scale emplacement (FE) experiment performed at Mont Terri underground rock laboratory. Nine research groups are participating in the task, and among them, KAERI simulates the experiment using OGS-FLAC. The simulator combines OpenGeoSys for TH simulation and FLAC3D for M simulation. Through the benchmark simulation, we verified OGS-FLAC for the two-phase flow analysis in the disposal system and finally modeled the FE experiment with a three-dimensional grid. We performed a simple sensitivity analysis to investigate the effect of input parameters on the two-phase flow system and confirmed that the compressibility and permeability affected the flow behavior. We also compared the simulation results to the field data and obtained well-matched results from a series of simulation.
        11.
        2022.05 구독 인증기관·개인회원 무료
        Geologic disposal of high-level radioactive waste is considered the most effective method to isolate high-level radioactive waste from the biosphere. A high-level radioactive waste repository is designed to be placed at a deep depth and generally consists of canisters, buffer material, and host rock. In the disposal system, the heat from the canister occurs for millions of years due to the long half-life of the high-level radioactive waste, and the heat induces vaporization of groundwater in the buffer material. The resaturation process also occurs due to groundwater inflow from the host rock by the hydraulic head and capillarity. The saturation variation leads to the heat transfer and multi-phase flow in the buffer material, and thermal pressurization of groundwater due to the heat affects the effective stress change in the host rock. The stress change can make the porosity and permeability change in the flow system of the host rock, and the flow system affects the nuclide migration to the biosphere. Therefore, it is crucial to understand the complex thermo-hydro-mechanical-chemical (THMC) coupled behavior to secure the repository’s long-term safety. DECOVALEX is an international cooperating project to develop numerical methods and models for predicting the THMC interactions in the disposal systems through validation and comparison with test results. In Task C of DECOVALEX-2023, nine participating groups (BGR, BGE, CAS, ENSI, GRS, KAERI, LBNL, NWMO, Sandia) models the full-scale emplacement (FE) experiments at the Mont Terri underground rock laboratory and focus on understanding pore pressure development, heat transfer, thermal pressurization, vaporization and resaturation process in the disposal system. In the FE experiment, three heaters generated heat with constant power for five years at a 1:1 scale in the emplacement tunnel based on Nagra’s reference repository design. KAERI used OGS-FLAC3D for the numerical simulation, combining OpenGeoSys for TH simulation and FLAC3D for M simulation. We generated a full-scale three-dimensional numerical model with a dimension of 100 by 100 by 60 meters. The pressure and temperature distribution were well simulated with the host rock's anisotropy. Based on the capillarity, we observed vaporization and resaturation in the bentonite under the twophase flow system. We plan to compare the simulation results with the field data and investigate the effect of input parameters, including thermal conductivity and pore compressibility affecting the thermal and flow system.
        20.
        2016.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an optical imaging survey of AKARI Deep Field South (ADF-S) using the Korea Microlensing Telescope Network (KMTNet), to find optical counterparts of dusty star-forming galaxies. The ADF-S is a deep far-infrared imaging survey region with AKARI covering around 12 deg2, where the deep optical imaging data are not yet available. By utilizing the wide-field capability of the KMTNet telescopes (∼4 deg2), we obtain optical images in B, R and I bands for three regions. The target depth of images in B, R and I bands is 24 mag (AB) at 5, which enables us to detect most dusty star-forming galaxies discovered by AKARI in the ADF-S. Those optical datasets will be helpful to constrain optical spectral energy distributions as well as to identify rare types of dusty star-forming galaxies such as dustobscured galaxy, sub-millimeter galaxy at high redshift.
        4,000원
        1 2