To test the muscle cell specific gene expression, we examined the ability of human α-skeletal muscle actin (ACTA) promoter or human myoglobin (hMb) promoter to direct the expression of the GFP gene in both muscle and non-muscle cells, respectively. C2C12 cells, a mouse myoblast cell line, provide a powerful model to study skeletal muscle differentiation in vitro. We intended to use this cell line as a model for skeletal muscle-specific gene expression during myogenic differentiation from myoblast to myotubes. We compared marker gene expression profiles of proliferating and differentiated C2C12 cells using RT-PCR and fluorescent microscopy analysis. Also, we found that the expression of PCK1 gene under the control of ACTA promoter was proportionally increased as C2C12 differentiated into myotube form. PCK1 is involved in the regulation of gluconeogenesis. In previous research, transgenic mice with overexpressing PCK1 in skeletal muscle showed a greatly enhanced level of physical activity, which extends well into old age. This is due, in part, to an increased number of mitochondria and a high concentration of triglyceride in their skeletal muscles. These mice also had very little body fat, despite eating 60% more than controls. We also constructed a mesenchymal stem cell line and fetal fibroblast cell line for the experiments aiming to make transgenic animals in which the PCK1 gene is specifically expressed in muscle tissue. Accumulated knowledge of this approach could be applicable to a variety of related biological areas including transgenic animal research, gene function study, anti-aging study, etc.
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Export Promotion Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (316002-5).
Human interferon alpha 2b (hIFNα-2b) is an important immune regulator widely used in clinic, for the treatment of chronic hepatitis, hairy cell leukemia, chronic myelogenous leukemia and multiple myeloma, etc. The clinically used hIFNα-2b is generally produced by E. Coli, which lacks the post-translational O-glycosylation of naturally synthesized protein, and has a short serum half-life. In this study, we report the successful generation of transgenic chickens that produce hIFNα-2b in the egg white using a feline immunodeficiency virus (FIV)-based lentiviral vector. In preliminary in vitro study, the hIFNα-2b gene under the control of CMV promoter expressed as much as 2,650 ng/㎖ in CEF-LNC-hIFNα-2bW cell. A FIV vector packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected underneath the blastoderm of freshly laid chicken eggs (stage X) to produce a hIFNα -2b transgenic chicken. Out of 187 injected eggs, 55 chicks were hatched after 21 days of incubation, and 27 of the G0 hatched chicks expressed the vector-encoded hIFNα-2b gene. The expression of recombinant hIFNα-2b in transgenic chickens constitutes an important step towards low-cost and full biological activity production of this protein drug in bioreactor.
This work was supported by the Bio-industry Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and by a grant from the Next-Generation BioGreen 21 Program (No. PJ011178), Rural Development Administration, Republic of Korea.
In the present study, using a MoMLV-based retrovirus vector, we successfully generated a new transgenic chicken line expressing high levels of hEPO. A replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of non-incubated chicken embryos (stage X). One rooster was mated to wild-type hens to produce 748 G1 progeny. PCR analysis of blood samples from these progeny revealed that there were seven G1 transgenic offspring, corresponding to a 0.9% germline transmission rate. Subsequently, Southern blot analysis of the genomic DNA from three G1 transgenic chickens was carried out to verify the stable genomic integration and copy number of the transgene in the genome. Quantitative analyses of the blood samples taken from G1 transgenic chickens resulted in 4,150 ~ 10,823 IU/㎖ (34.6 ~ 90.2 ㎍/㎖) of hEPO in the blood. The biological activity of the recombinant hEPO in transgenic chicken serum was comparable to its commercially available counterpart. Red blood cell numbers were more than three-fold higher in the transgenic chickens compared to the non-transgenic chickens. Successful germline transmission of the transgene was also confirmed in G2 transgenic chicks produced from crossing G1 transgenic roosters with non-transgenic hens. We confirmed that 13 transgenic chicks of 45 G2 progeny, corresponding to a 28.9% germline transmission rate. These results will help establish a useful transgenic chicken model system for studies of embryonic development and for efficient production of transgenic chickens as bioreactors.
This work was supported by the Bio-industry Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and by a grant from the Next-Generation BioGreen 21 Program (No. PJ011178), Rural Development Administration, Republic of Korea.
Effectiveness of transgene transfer into genome is crucially concerned in mass production of the bio-pharmaceuticals using genetically modified transgenic animals as a bioreactor. Recently, the mammary gland has been considered as a potential bioreactor for the mass production of the bio-pharmaceuticals, which appears to be capable of appropriate post-translational modifications of recombinant proteins. The mammary gland tissue specific vector system may be helpful in solving serious physiological disturbance problems which have been a major obstacle in successful production of transgenic animals. In this study, to minimize physiological disturbance caused by constitutive over-expression of the exogenous gene, we constructed new retrovirus vector system designed for mammary gland-specific expression of the hEPO gene. Using piggyBac vector system, we designed to express hEPO gene under the control of mammary gland tissue specific and lactogenic hormonal inducible goat β-casein or mouse Whey Acidic Protein (mWAP) promoter. Inducible expression of the hEPO gene was confirmed using RT-PCR and ELISA in the mouse mammary gland cells treated with lactogenic hormone. We expect the vector system may optimize production efficiency of transgenic animal and reduce the risk of global expression of transgene.
In this study, to further understand the mechanism of animal growth and to develop a miniature transgenic animal model, we constructed and tested tetracycline-inducible RNAi system using shRNA targeting the mRNA of mouse insulin-like growth factor (mIGF-1) or mouse growth hormone receptor (mGHR) gene. Quantitative real-time PCR analysis of mouse liver cell (Hepa1c1c7) cells transfected with these vectors showed 85% or 90% of expression inhi-bition effect of IGF-1 or GHR, respectively. In ELISA analysis, the protein level of IGF-1 in the cells expressing the shRNA targeting IGF-1 mRNA was reduced to 26% of non-transformed control cells. Unexpectedly, in case of using shRNA targeting GHR, the IGF-1 protein level was decreased to 75% of control cells. Further experiments are needed to explain the lower interference effect of GHR shRNA in IGF-1 protein. Accumulated knowledge of this approach could be applicable to a variety of related biological area including gene function study, gene therapy, development of miniature animals, etc.
Until recently the most popular tetracycline-inducible gene expression system has been the one developed by Gossen and Bujard. In this study, we tested the latest version of same system and the results are summarized as follows: Compared with previous one, the difference of new system are minor changes of nucleotide sequences in transactivator and tetracycline response element (TRE) regions. Sensitivity to the doxycycline (a tetracycline derivative) was improved. Leakiness of GFP marker gene expression in non-inducible condition was significantly decreased. Higher expression of the marker gene was observed when the cells were fed with doxycycline- containing medium. Optimal insertion site of woodchuck posttranscriptional regulatory element (WPRE) sequence which was known to increase gene expression was different depending on the origin of cells. In chicken embryonic fibroblast, location of WPRE sequence at 3’ end of TRE resulted in the highest GFP expression. In bovine embryonic fibroblasts, 3’ end of transactivator was the best site for the GFP expression.
Transgenic chickens have been spotlighted as an highly potent bioreactor for their fecundity, short generation time, and eggs associated with mass production of protein. In this study, we generated transgenic chickens exhibiting oviduct specific expression of human growth hormone fused to human transferrin for oral administration. Gene of the modified growth hormone located at downstream ovalbumin promoter (∼3.6 kb) was introduced to stage X blastodermal cell employing retrovirus vector system. Several transgenic chickens were successfully generated. However, genomic analyses showed unexpected deletion within the transgene. The modification of the transgene seemed to occur during germ cell formation because the deletion was detected only from the sperm DNA of the G0 founder animal. There was no evidence of deletion in the somatic cell DNA samples of the same chicken. Consequently, same pattern of the deletion was confirmed in both somatic and germ cells of the G1 progeny.
Among laboratory animals, pigs are anatomically and physiologically closer to human. Transgenic (TG) pigs can be widely applied as models of human diseases. Many researchers created TG pigs which have specific modified genome under a constitutively active promoter. A constitutively active promoter is effective to express a target gene, but the uncontrollable expression often results in unwanted outcomes. In this study, as a way to solve these problems, we tried to regulate the expression of target genes by tetracycline (Tet) on/off system. We tested the operation of Tet on/off system in TG donor cells. Miniature porcine fetal fibroblasts were transfected with universal doxycycline- inducible vector and an enhanced green fluorescent protein (eGFP) was used as the target gene. The induced transgene expression by doxycycline was detected on fluorescence microscopy. On one day after 1 μg/ml doxycycline treatment, the fluorescence intensity for TG cells was increased. And we then performed Somatic Cell Nuclear Transfer (SCNT) to confirm the working of Tet on/off system in the porcine SCNT-TG embryos. Total 649 transgenic porcine SCNT embryos were made. From these, 64 of SCNT embryos used in invitroculturewith1 μg/mldoxycycline. Among these porcine SCNT-TG embryos, 39 embryos (60.9%) were cleaved. Finally, 15 transgenic porcine SCNT embryos developed blastocyst. Induced transgene expression was observed all of cleaved embryos and blastocysts. The remaining 585 embryos were transferred to 6 surrogates. On 25 days after embryo transfer, two surrogates were diagnosed as pregnant (pregnancy rate =33.3%). On day 113 (one day prior to delivery), we obtained six cloned TG piglets from first pregnant surrogate. Unfortunately, all TG piglets died because their surrogate died suddenly at delivery time. However, we could obtain the TG cell lines from the cloned TG piglets. Being analyzed by PCR, all piglets were found to be eGFP gene targeted. Now, second pregnant surrogate have maintained at 80 days after embryo transfer and shown more than three embryonic sacs. This data suggested that, Tet on/off system can control target gene expression in transgenic porcine SCNT embryos. This result has presented new possibilities of regulation of target gene expression in cloned TG pigs by Tet on/off system. * This work was supported by a grant from Next-Generation BioGreen 21 program (# PJ008121), Rural Development Administration, Republic of Korea.
Chicken Insulin-like Growth Factor-1 (cIGF-1), one of the most important hormone for regulating physiological function includes body growth, muscle volume, bone density, chicken cell development and metabolism. In order to find in vitro Knokdown expression of cIGF-1, this study introduced tetracycline inducible RNA interference expression system (TetRNAi system). Tet system can inductively control high expression of extrinsic genes and expression of intrinsic genes. So it has advantages such as minimized physiological side-effects any cell and low cytotoxicity. RNAi system is proving to be a powerful experimental tool for inhibition of gene expression and post-transcriptional mechanism of gene silencing. RNAi is mediated by small interfering RNA (siRNA) consisting of 19- to 23- nucleotide double-stranded RNA duplexes that promote specific endonucleolytic cleavage of mRNA targets through an RNA-induced silencing. Then, this study RNAi-based gene knockdown can be achieved by retroviral-based expression systems. Stable integration of our inducible siRNA vector allowed the production of siRNA on doxycycline induction, followed by specific down regulation of chicken IGF-1 gene. Analyses of Real-time PCR to determine expression of the cIGF-1 gene showed successful from chicken embronic fibroblast (CEF) cells with the reduced rate of an approximately 92%. Our results demonstrate the successful regulation of cIGF-1 knockdown expression in CEF cells and support the application of an tetracycline inducible RNAi expression system in transgenic Mini chicken production. This research was supported by Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
Human growth hormone (hGH), one of the most important hormones in medicine, is secreted from anterior pituitary gland. Its broad physiological function includes body growth, cell regeneration, increasement of muscle volume, bone density, body fat reduction, and so on. Due to the wide range of therapeutic effects, the hGH produced from E. coli has been commercialized already. In this study, we asked whether it is possible to produce recombinant hGH efficiently from various cultured mammalian cells. To meet this purpose, we chose a retrovirus vector system for transfer and expression of the hGH gene in various mammalian cells. Analyses of RT-PCR, ELISA, and Western blot to determine expression of the hGH gene showed the highest production of the hGH was determined from chicken embronic fibroblast (CEF) cells with the concentration of 8.58 μg/ml. The biological activity of the hGH was similar to the commercially available counterpart. These results suggest that mass production of hGH is possible not only in the E. coli but also in the various mammalian cells.
hFSH is a glycoprotein secreted from anterior pituitary and consists of α and β subunits. Because of its major biological functions including sperm formation in the male and for follicular growth, FSH is used to cure woman's sterility. In this study we tried to produce recombinant hFSH in vitro using a retrovirus expression vector. Two major components of the vector we constructed are: (ⅰ) a DNA fragment containing α and β genes fused by a DNA sequence coding carboxyl terminal peptide (CTP) of human chorionic gonadotropin, (ⅱ) a DNA fragment corresponding woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Evaluation of expression profile of the recombinant FSH using reverse transcription PCR and enzyme-linked immunosorbent assay (ELISA). Among three cell lines tested, HeLa cells were the best for hFSH expression (5,395 mIU/ml), then followed by chicken embryonic fibroblast (CEF) cells and Chinese hamster ovary (CHO) cells in the order of hFSH production. In addition to the amount, the FSH produced from HeLa cells was highest in terms of biological activity which was determined by measuring cAMP.
The purpose of this study is to establish a basic culture system enabling in vitro culture of chicken blastodermal cells and to test the feasibility of retrovirus-mediated gene transfer to the cultured cells. The blastodermal cells were isolated from freshly laid eggs of stage X and cultured with or without STO feeder layer cells. Stem cell-like morphology was maintained after multiple passages and RT-PCR analysis proved expression of several stem cell specific genes. Immunocytochemical analysis using antibodies of anti-EMA-1 and anti-SSEA-1 also showed the feature of stem cells. Infection of the cultured blastodermal cells with LNCGW retrovirus vector resulted in successful transfer of foreign genes. The results of this study may be useful in establishing stem cell-mediated transgenic chicken production.
We report here the production of transgenic chickens that can regulate human erythropoietin (hEPO) gene expression. The glycoprotein hormone hEPO is an essential for viability and growth of the erythrocytic progenitors. Retrovirus vector system used in this study has two features including tetracycline-controllable promoter and woodchuck hepatitis virus posttranscriptional regulator element (WPRE). The former is for to reduce the possibility of physiological disturbance due to constitutional and unregulated expression of hEPO gene in the transgenic chicken. The latter is for maximum expression of the foreign gene when we turn-on the gene expression. A replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 325 injected eggs, 28 chicks hatched after 21 days of incubation and 16 hatched chicks were found to express the hEPO gene delivered by the vector. The biological activity of the recombinant hEPO in transgenic chicken serum was comparable to its commercially available counterpart. The recombinant hEPO in transgenic chicken serum had N- and O-linked carbohydrate simillar to that produced from in vitro cultured cells transformed with hEPO gene.
In this study we tried to construct a more efficient tetracycline-inducible gene expression system by replacing previous key elements with more advance ones. At the beginning, we substituted PGK (phophoglycerate kinase) promoter for CMV (cytomegalovirus) promoter to control “rtTA2sM2” which has been known for high induction efficiency in response to tetracycline. With this modification, expression of the EGFP marker gene under the induction condition was significantly increased. Next, we replaced “TRE” fragment with a modified version named “TRE- tight” which has been reported to have higher affinity and specificity to the transactivator by minor base change of the “TRE” DNA fragment sequence. Use of “TRE-tight” instead of “TRE” resulted in more than 10 fold increment in terms of induction efficiency and significant decrement of background expression in non-inducible condition. By combining PGK promoter and “TRE-tight” fragment, we could upgrade previous tetracycline-inducible system to show more stringent turn on/off gene switch ability and stronger expression of the gene of our interest. Use of this newly developed system must be very helpful to the studies of gene expression, especially to the transgenic animal study in which non-controllable constitutive expression of the transgene has been one of the urgent problems to be solved.
본 연구는 vesicular stomatitis virus G glycoprotein (VSV-G)으로 피막이 형성되는 replication-defective MoMLV-based vector를 이용한 hTPO 헝질전환 닭의 생산에 관한 연구이다. 실험에 사용한 retrovirus vector의 구조는 hTPO 유전자의 발현 조절을 위해 internal promoter인 hCMV promoter를 이용하였으며 외래 유전자의 발현을 증가시키기 위해 woodchurk hepatitis virus posttranascriptional regulatory element (WPRE) 서열을 도입하였다. 재조합한 vector는 GP2 293 포장세포에 도입하여 virus를 생산하였으며 이 virus를 이용하여 감염시킨 여러 표적세포에서 hTPO의 발현과 생물학적 활성을 확인하였다. 재조합 hTPO의 생물학적 활성은 시판되고 있는 재조합 hTPO에 비해 우월한 것으로 확인되었다. hTPO 형질전환 닭의 생산을 위하여 1,000배 이상 고농도로 농축된 virus를 stage X 단계의 계란의 배반엽 층에 미세주입하여 대리난각 방법으로 배양하였다. 미세주입한 132개의 계란 중 21일 후에 11개의 계란에서 병아리가 부화하였으며 그중 4마리가 형질전환 개체로 확인되었다. 그러나 생산된 4마리 중 3마리가 부화 후 1개월 이내에 원인불명으로 사망하였다. 본 연구의 의의는 상업적 이용 가능성이 있는 생물학적 활성을 가진 사람의 cytokine 단백질의 대량 생산을 위한 생체 반응기로서의 형질전환 닭 개발의 시례를 제공하는데 있다.
Pronuclear DNA microinjection has been the most universal method in transgenic animal production but its success rate of transgenesis in mammals are extremely low. To address this long-standing problem, we used retrovirus- and lentivirus-based vectors carrying the enhanced green fluorescent protein (EGFP) gene under the control of ubiquitously active cytomegalovirus (CMV) promoter to deliver transgenes to bovine embryos. The rate of transgenesis was evaluated by counting EGFP positive blastocysts after injection of concentrated virus stock into the perivitelline space of the bovine oocytes in metaphase II. Among two different types of lentivirus vectors derived from FIV (feline immunodeficiency virus) and HIV (human immunodeficiency virus), the former scored the higher gene transfer efficiency; almost 100% of the blastocysts developed from the oocytes infected with FIV-based vector were EGFP positive. As for the vectors derived Com HIV lentivirus, the transgenesis rate of the blastocysts was reduced to 39%.