This paper compares the effect of using different types of iron powders for the preparation of by calciothermic reduction-diffusion (CRD). Three types of iron powder were used: carbonyl, sponge and water atomized. The results show that, when immediately nitrogenated after the CRD process, prepared from sponge and water atomized iron powders yield -magnets with a high degree of texture. However, after a suitable treatment with hydrogen followed by nitrogenation, -powders made from Carbonyl iron produce magnets with the best quality regarding coercivity, remanence and degree of texture.
In order to obtain specific magnetic properties, it is of paramount importance to increase the alloy density of components fabricated by powder metallurgy. An alternative to increase the density of alloys such as Fe-49Co-2V would be the use of elemental Fe and Co instead of the pre-alloyed powder. Trying to give some insight on the industrial application of this strategy, this paper investigates the replacement of more conventional pre-alloyed Fe-49Co-2V powders with elemental Fe and Co. A previous analysis shows that it is possible to achieve higher densities and leads to a noticeable improvement in some important magnetic properties.
This paper describes a Plasma Assisted Debinding and Sintering (PADS) equipment, which has been designed to process Metal Injection Molded (MIM) components. The use of a hybrid system combining a glow discharge with a conventional heating system makes debinding and sintering of MIM components, in the same heating cycle, a feasible industrial process. Characteristics as density, carbon content and mechanical properties are similar to traditionally processed MIM materials. The reduction of energy and gas consumption and shorter lead-times are economic advantages of PADS system. The clean environment of PADS is also an ecological advantage.