In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, -FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
매년 국내로 비래해 오는 해충인 벼멸구는 그 기원이 중국 또는 중국 남부일 것으로 예상해왔으나, 이에 대한 유전학적 근거는 Mun et al. (1999)에 의해 제시된 세 가지 COI haplotype 비교가 유일하다. Mun et al. (1999)은 국내에 서 확인된 두 가지 haplotype 유형이 인도차이나반도 이남의 균일한 한 가지 haplotype 집단 유형과 중국에서 확인 된 또 다른 haplotype 집단 유형임을 근거로 국내 벼멸구의 기원을 중국으로 특정한 바 있다. 본 연구는 국내 및 동남아시아 5개국(부탄, 미얀마, 캄보디아, 라오스 및 태국)으로부터 직간접적으로 확보한 개체들을 대상으로 GBS (genotyping by sequencing) 및 NGS 기법을 통해 PCA를 포함한 다양한 집단유전학적 분석을 수행하였다. 그 결과 인도차이나반도의 벼멸구 집단은 크게 북부와 남부로 나뉘며, 국내 개체들은 북부에 비해 남부(캄보디 아, 태국)에 더 가깝다는 사실을 확인하였다. 따라서 벼멸구의 국내 비래는 중국으로부터의 기원 이전에 장마전 선이 형성될 무렵부터 인도차이나반도 남쪽의 고온다습한 서풍이 남남서풍으로 바뀌면서 중국 내륙을 거쳐 국내로 비래하는 경로를 따르는 것으로 보인다. 하지만 태안의 개체 중에는 인도차이나반도 집단들의 외군으로 확인되는 개체가 있었고, 이는 인도차이나반도 외의 샘플링되지 않은 다른 지역에서도 벼멸구가 국내로 비래할 수 있다는 가능성을 제시하였다. 따라서 국내로 유입되는 벼멸구의 유전적 기원을 확인하기 위해서는 인도차이 나반도 남쪽 지역에서 시작한 동아시아 여름 몬순의 바람이 한국으로 도착하는 경로에 위치한 다른 지역에서의 추가적인 샘플링 및 지속적인 관심과 추적이 필요할 것이다.
Consumers may not be fully aware of the level of personalization used in brand placements in digital advertising. Personalized brand placements use customer data to select and insert preferred brands into digital media content, such as having Coke appear in a YouTube video for someone who favors Coca-Cola. This personalization can enhance the consumer experience (Trifts & Aghakhani, 2018) but may also backfire if placements don't account for changes in brand preference or when personalized placements are co-consumed with a person whose preferences strongly diverge from one’s own (e.g., one’s romantic partner; Brick, Fitzsimons, Chartrand, & Fitzsimons, 2018). Brands have a significant impact on how people perceive each other. Brands convey social information and symbolic meaning (Keller, 1993; Levy, 1959) and can influence behavior (e.g., Fitzsimons, Chartrand, & Fitzsimons 2008) and provide a source of affiliation (Escalas & Bettman, 2003). However, less is known about how brands affect basic social connections like empathy. This notable gap is relevant to the evaluation of the impact of brand placements in digital advertising as brand logos are quite visible in brand placements and can be the first piece of information someone observes when forming an attitude towards another person. For example, imagine an Instagram post of a person wearing a Harley Davidson baseball cap. What kind of person did you imagine? Does your impression change if, instead, the brand was People for the Ethical Treatment of Animals, or the Trump Organization? Moreover, how likely would you be to engage with media showcasing a person supporting this brand. In the current research, we propose that personally disliked brands create a negative bias in person perception and consumer judgment, a phenomenon we coin “brand negativity bias.” Our results show that disliking a brand can reduce empathy for others and substantially bias attitudes toward a digital product associated with but not created by the brand. Specifically, we show process evidence that suggests disliked brand placements reduce (1) empathy toward others through reductions in perceived similarity and (2) attitudes toward a digital product through perceived similarity and empathy, as serial processes. In addition, although we do not empirically test an overall mechanism that explains the negativity bias in its entirety, we speculate several reasons that underlie the broad influence of personally disliked brands (e.g., symbolic, ideological, or moral). From a societal point of view, our findings inform the public to be mindful of how simple consumption cues can bias people’s decision making, which holds implications beyond consumer judgment in domains involving first impressions.
수달(Eurasian otter, Lutra lutra)은 식육목 족제비과에 속하는 동물이다. 수달은 수계환경 먹이그물의 최상위에 존재하는 포식자로 핵심종(keystone species)이자 건강한 수계환경을 대변하는 지표종(Indicator species)이다. 현대에 이르면서 남획과 서식지 파괴, 환경 오염 등에 의하여 한강 도심 수계에서 사라졌지만, 2016년 다시 발견된 이후 2021년 1월에도 한강의 지류인 청계천, 중랑천과 성내천에서 서식함을 확인하였다. 수달의 서식지 보호와 관리 방안 수립을 위하여 잠재 서식지 평가가 시급하나, 기존의 수달 서식지 관련 연구는 자연형 하천과 저수지 위주로 이루어져 한강 도심 지류와 같이 좁은 공간에 인위적으로 한정된 서식지에 적용하기에는 한계가 있다. 본 연구에서는 인공하천인 청계천이 수달의 잠재 서식지로 적합한지를 서식지 적합성 지수(Habitat Suitability Index, HSI)를 활용하여 평가하였다. 서식지 적합성 지수는 수달의 서식 환경을 나타내는 지표, 먹이자원, 위협 요소 환경 특성을 종합하여 추정하였다. 그 결과 성북천과 청계천의 합류 지점과 청계천과 중랑천의 합류 지점이 적합한 서식지로 나타났다. 본 연구에서 추정한 HSI는 도심 하천의 수달 서식지 평가가 가능하였으며, 따라서 청계천을 포함한 한강 도심 지류에서의 효과적인 수달 모니터링과 수달 인공 서식지 장소 선정을 위한 기반 자료가 될 수 있을 것으로 판단된다.
The surface of carbon films deposited with inverted plasma fireballs is analysed in this paper. Measurements were conducted with Raman spectroscopy, atomic force microscopy and nanoindentation. The latter was used to obtain Young’s modulus as well as Martens and Vickers hardness. The roughness of the film was measured by atomic force microscopy and its thickness was measured. It was shown with Raman spectroscopy that the films are homogeneous in terms of atomic composition and layer thickness over an area of about 125 × 125 mm. Furthermore, it was demonstrated that inverted plasma fireballs are a viable tool for obtaining homogeneous, large area carbon films with rapid growth and very little energy consumption. The obtained films show very low roughness.
We complete the survey for finite-source/point-lens (FSPL) giant-source events in 2016–2019 KMTNet microlensing data. The 30 FSPL events show a clear gap in Einstein radius, 9 μas < θE < 26 μas, which is consistent with the gap in Einstein timescales near tE ∼ 0.5 days found by Mr´oz et al. (2017) in an independent sample of point-source/point-lens (PSPL) events. We demonstrate that the two surveys are consistent. We estimate that the 4 events below this gap are due to a power-law distribution of freefloating planet candidates (FFPs) dNFFP/d logM = (0.4 ± 0.2) (M/38 M⊕)−p/star, with 0.9 ≲ p ≲ 1.2. There are substantially more FFPs than known bound planets, implying that the bound planet power-law index γ = 0.6 is likely shaped by the ejection process at least as much as by formation. The mass density per decade of FFPs in the Solar neighborhood is of the same order as that of ‘Oumuamua-like objects. In particular, if we assume that ‘Oumuamua is part of the same process that ejected the FFPs to very wide or unbound orbits, the power-law index is p = 0.89 ± 0.06. If the Solar System’s endowment of Neptune-mass objects in Neptune-like orbits is typical, which is consistent with the results of Poleski et al. (2021), then these could account for a substantial fraction of the FFPs in the Neptune-mass range.
A step toward world peace could be achieved by Korea, Japan, and the United States jointly celebrating their promotion of cherry blossom festivals based on Jeju Island native Prunus Yeodensis, or Somei- Yoshino Cherry trees. Based on bio-diplomacy, this celebration of new beginnings and the emphemeral nature of the material world could be a foundation for peace-building by these three nations and others and for putting aside past grievances.
We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet―host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36 -0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62 -2.87 MJup, at a distance of DL = 5.67+1.11 -1.52 kpc. The projected star{planet separation is aㅗ = 3.92+1.10 -1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens{source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.