검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 791

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present research focuses on the tribological behavior of the AA5083 alloy-based hybrid surface composite using aluminosilicate and multi-walled-carbon nanotube through friction stir processing for automotive applications. The friction stir processing parameters (tool rotation and traverse speed) are varied based on full factorial design to understand their influence on the tribological characteristics of the developed hybrid composite. The surface morphology and composition of the worn hybrid composite are examined using a field-emission scanning electron microscope and an energy-dispersive x-ray spectroscope. No synergistic interaction is observed between the wear rate and friction coefficient of the hybrid composite plate. Also, adhesive wear is the major wear mechanism in both base material and hybrid composite. The influence of friction stir process parameters on wear rate and the friction coefficient is analyzed using the hybrid polynomial and multi-quadratic radial basis function. The models are utilized to optimize the friction stir processing parameters for reducing the rate of wear and friction coefficient using multi-quadratic RBF algorithm optimization.
        4,800원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nanostructured dysprosium oxide ( Dy2O3) was synthesized by the co-precipitation method and incorporated with graphitic carbon nitride (g-C3N4) using the ultrasonication method. The resultant product is denoted as Dy2O3/ g-C3N4 nanocomposite which was further used for electrochemical sensing of riboflavin (RF). The physicochemical properties of Dy2O3/ g-C3N4 nanocomposite were examined using several characterization techniques. The obtained results exhibit the nanocomposite formation with the preferred elemental compositions, functional groups, crystalline phase and desired surface morphology. The electrocatalytic performance of Dy2O3/ g-C3N4 nanocomposite was scrutinized with a glassy carbon electrode (GCE) via differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques with the conventional three-electrode system. The modified electrode distributes more active surface area suggesting high electrocatalytic activity for the RF detection with two linear ranges (0.001–40 μM and 40–150 μM), a low detection limit of 48 nM and sound sensitivity (2.5261 μA μM−1 cm− 2). Further, the designed sensor possesses high selectivity, excellent stability, repeatability and reproducibility. Finally, the fabricated sensor was successfully estimated for the detection of RF in actual food sample analysis using honey and milk with better recovery.
        5,200원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dyeing process is a very important unit operation in the leather and textile industries; it produces significant amounts of waste effluent containing dyes and poses a substantial threat to the environment. Therefore, degradation of the industrial dye-waste liquid is necessary before its release into the environment. The current is focusing on the reduction of pollutant loads in industrial wastewater through remediating azo and thiazine dyes (synthetic solutions of textile dye consortium). The current research work is focused on the degradation of dye consortium through photo-electro-Fenton (PEF) processes via using dimensionally stable anode (Ti) and graphite cathode. The ideal conditions, which included a pH of 3, 0.1 (g/L) of textile dye consortium, 0.03 (g/L) of iron, 0.2 (g/L) of H2O2, and a 0.3 mAcm-2 of current density, were achieved to the removal of dye consortium over 40 min. The highest dye removal rate was discovered to be 96%. The transition of azo linkages into N2 or NH3 was confirmed by Fourier transforms infra-red spectroscopic analysis. PEF process reduced the 92% of chemical oxygen demand (COD) of textile dye consortium solution, and it meets the kinetics study of the pseudo-first-order. The degradation of dye through the PEF process was evaluated by using the cyclic voltammetric method. The toxicity tests showed that with the treated dye solution, seedlings grew well.
        4,800원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A thermochemical conversion method known as hydrothermal carbonization (HTC) is appealing, because it may convert wet biomass directly into energy and chemicals without the need for pre-drying. The hydrochar solid product’s capacity to prepare precursors of activated carbon has attracted attention. HTC has been utilized to solve practical issues and produce desired carbonaceous products on a variety of generated wastes, including municipal solid waste, algae, and sludge in addition to the typically lignocellulose biomass used as sustainable feedstock. This study aims to assess the in-depth description of hydrothermal carbonization, highlighting the most recent findings with regard to the technological mechanisms and practical advantages. The process parameters, which include temperature, water content, pH, and retention time, determine the characteristics of the final products. The right setting of parameters is crucial, since it significantly affects the characteristics of hydrothermal products and opens up a range of opportunities for their use in multiple sectors. Findings reveal that the type of precursor, retention time, and temperature at which the reaction is processed were discovered to be the main determinants of the HTC process. Lower solid products are produced at higher temperatures; the carbon concentration rises, while the hydrogen and oxygen content declines. Current knowledge gaps, fresh views, and associated recommendations were offered to fully use the HTC technique's enormous potential and to provide hydrochar with additional useful applications in the future.
        6,300원
        8.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Water contamination is one of the most pressing environmental issues of the present. There is a significant amount of interest in the slow pyrolysis of biomass to produce biochar, a solid byproduct that is stable and rich in carbon. Adsorbents manufactured from hydrochars, sometimes referred to as hydrochar created by hydrothermal methods, have been tested for the removal of possible contaminants from wastewater. The hydrothermal processes of hydrothermal carbonization (HTC) and liquefaction (HTL) yield hydrochars, a distinct category of biochar. Because of its peak efficiency, large surface area, large size of pore and capacity to regenerate, hydrochar is an acceptable option for the rehabilitation of a range of pollutants. The formation, activation, identification, and use of biochar and hydrochar were highlighted in this review. The physiochemical properties of the char produced by the two processes are very different, which has an impact on their potential uses in areas like wastewater pollution remediation, soil improvement, greenhouse gas emission and carbon sequestration among others.
        6,400원
        9.
        2023.07 구독 인증기관·개인회원 무료
        With the growth of blockchain technology, the potential of NFTs is receiving significant attention across all industries. As NFTs emerge as a novel type of asset, they are drawing attention as a potentially important market, particularly for many luxury goods. This study aims to understand the concept of NFTs and their influence on e-WOM. This study develops a research model that facilitates an understanding of luxury brands’ NFT marketing activities and tests it with a consumer survey. Our analysis reveals important characteristics of perceived NFT marketing activities such as scarcity, resaleability, and authenticity. Furthermore, the impact of specific NFT marketing activities and their influence on e-WOM are discussed. This study contributes theoretical insights for researchers and has practical implications for practitioners who manage marketing activities for NFTs.
        10.
        2023.07 구독 인증기관·개인회원 무료
        The objective of this study is to compare the efficiency of VR and 2D in the tourism industry as marketing tools, using affective forecasting and purchase intention. Accordingly, this study has two primary research aims. The first is to examine if a higher level of mental imagery (resulting from VR) is more effective than a lower level (2D) in a tourism marketing context. To evaluate this, the researchers use experimental method, measuring predicted dominance, predicted pleasure and predicted arousal, as well as purchase intention towards the hotel. Relevant to the tourism industry, tourism products are spatially and temporally distant (vs. near). This study aims to investigate how differently mental imagery, resulting from VR (versus 2D) experience, generates affective forecasting of a tourism product when tourists plan distant (versus near) future trips (temporal distance).
        11.
        2023.07 구독 인증기관·개인회원 무료
        Social media influencers are becoming increasingly important to the advertising world. As individuals who use their extensive following to endorse products, create trends and ultimately drive purchase intentions, influencers are often seen as role models, especially as pertains to body image. As such, we conduct experimental research to examine how influencer size (0 vs. 14) affects attractiveness perceptions, perfectionist expectations, and purchase intentions. Drawing on self-determination theory we find that perfectionism toward others is the underlying mechanism for the effects of motivation and size. Societal and managerial implications are discussed.
        12.
        2023.07 구독 인증기관·개인회원 무료
        Food waste is a critical problem for many countries. Food producers and groceries often discard imperfect foods or food by-products that still contain nutritional value. To address this problem, some food manufacturers have turned to upcycling, that is, to convert otherwise discarded ingredients into new food products (e.g., cacao fruit pulp into crunch bites). Consumers’ acceptance of sustainable products is generally lower than that of conventional products due to quality concerns. We speculate that for upcycled food products, consumers’ perception of product quality may vary when different percentages of imperfect ingredients are integrated into the products. Drawing from schema congruity theory, this research examines how the usage of imperfect ingredients can impact the perceived quality of upcycled food products. The implications for marketing upcycled foods are discussed.
        13.
        2023.07 구독 인증기관·개인회원 무료
        In recent years, Metaverse has become one of the most popular buzzwords in digital transformation and marketing. The concept of the metaverse refers to a new paradigm for how we will use and interact with digital technologies within an immersive virtual environment (Dwivedi, et al., 2022).
        14.
        2023.07 구독 인증기관·개인회원 무료
        To address the existential threat of climate change, it is important to study environmentally sustainable products and marketing strategies to promote such products. A repurposed product is created by transforming old objects into something of greater value that serves a different purpose. For example, transforming an old tie into a coffee cup sleeve or turning a discarded oil can into a drum. Thus, repurposed products are one form of waste reduction via reuse. Repurposed products have become popular in the marketplace. There is, however, little research on repurposed product consumption. Furthermore, Gen Z is a relatively unexplored population in past research on sustainable consumption. To address these research gaps, our study identified segments of Gen Zers based on their perceptions of repurposed products via a person-centered approach. Our results provide strategies for effective marketing of repurposed products. Implications for marketers are provided.
        15.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this experimental work, a p-type c-Si (100) substrate with 8 × 8 × 2 mm dimension was taken for TiCN thin-film coating deposition. The whole deposition process was carried out by chemical vapor deposition (CVD) process. The Si substrate was placed within the CVD chamber at base pressure and process pressure of 0.75 and 500 mTorr, respectively, in the presence of TiO2 (99.99% pure) and C (99.99% pure) powder mixture. Later on, quantity of C powder was varied for different set experiments. The deposition of TiCN coating was carried out in the presence of N2– H2–TiCl4–CH3CN gas mixture and 600 ℃ of fixed temperature. The time for deposition was fixed for 90 min with 10 and 5 ℃ min− 1 heating and cooling rate, respectively. Later on, heat treatment process was carried out over these deposited TiCN samples to investigate the changing characteristics. The heat treatment was carried out at 800 ℃ within the CVD chamber in the absence of any gas flow rate. The morphological properties of heat-treated samples have been improved significantly, evidence is observed from SEM and AFM analyses. The structural analysis by XRD has been suggested, upgradation in crystallinity of the heat-treated film as it possessed with sharp and higher intensity peaks. Evidence has been found that the electrochemical properties are enhanced for heat-treated sample. Raman spectroscopy shows that the intensity of acoustic phonon modes predominates the optic phonon modes for untreated samples, whereas for heat-treated samples, opposite trends have been observed. However, significant degradation in mechanical properties for heat-treated sample has been observed compared to untreated sample.
        5,800원
        16.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Here, we report the preparation of microporous-activated carbons from a Brazilian natural lignocellulosic agricultural waste, cupuassu shell, by pyrolysis at 500 ºC and KOH activation under different experimental conditions and their subsequent application as adsorbent for CO2 capture. The effect of the KOH:precursor ratio (wt/wt%) and the activation temperature on the porous texture of activated carbons have been studied. The values of specific surface area ranged from 1132 to 2486 m2/ g, and the overall micropore volume ranged from 0.73 to 1.02 cm3/ g. Carbons activated with 2:1 ratio of KOH and activation temperature of 700 ºC presented a CO2 adsorption at 1 bar of 7.8 and 4.4 mmol/g at 0 °C and 25 ºC, respectively. The isosteric heat of adsorption, Qst , was calculated for all samples by applying the Clausius–Clapeyron approach to CO2 adsorption isotherms at both temperatures. The values of CO2 adsorption capacities are among the highest reported in the literature, especially for activated carbons produced from biomass.
        4,000원
        19.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adsorption of arsenic by graphene-based adsorbents is widely applied to remove arsenic from water and has become a promising technology. However, most of the reported studies were conducted at a relatively higher concentration of arsenic in As (V) oxidative form, whereas the As (III) is more difficult to remove from water and more toxic, which prompted us to conduct the study at a lower concentration of 1 ppm in As (III). A Facile and controlled synthesis of graphene-based metal/ metal oxide nanomaterials and adsorptive removal of aqueous As (III) is reported here. Adsorbents were characterized using spectroscopy (FTIR, XPS and Raman) and microscopy (TEM). The maximum uptake of arsenic obtained was 88.8% from the RGO-Fe3O4 composite among all the adsorbents. The pseudo-second-order model and Intra-particle mass transfer diffusion model were applied to determine the adsorption kinetics with varying contact time between the adsorbents and the As (III) in water to interact. Experimental results suggest that the adsorption of As (III) onto the adsorbents was a multi-step process involving external adsorption to the surface followed by diffusion to the interior. A simple spectrophotometric method also was used for the detection and quantification of As (III).
        4,200원
        1 2 3 4 5