We newly sequenced mitochondrial genomes of Spodoptera litura and Cnaphalocrocis medinalis (Lepidoptera) to obtain further insight into mitochondrial genome evolution and investigated the influence of optimal strategies on phylogenetic reconstruction of Lepidoptera. Estimation of p-distances of each mitochondrial gene for available taxonomic levels has shown the highest value in ND6, whereas the lowest values in COI and COII at the nucleotide level, suggesting different utility of each gene for different hierarchical group when individual genes are utilized for phylogenetic analysis. Phylogenetic analyses mainly yielded the relationships (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea), evidencing the polyphyly of Macrolepidoptera. The tests of optimality strategies, such as exclusion of third codon positions, inclusion of rRNA and tRNA genes, data partitioning, RY recoding approach, and recoding nucleotides into amino acids suggested that the majority of the strategies did not substantially alter phylogenetic topologies or nodal supports, except for some familial relationship only in the amino acid dataset.
The species status of Oeneis urda (Eversmann) and O. mongolica (Oberthür) has been argued based on morphological characters. Reexamination of their major morphological characters has shown a slight differentiation in the two species. Sequences of three mitochondrial genes (COI, ND6, and ND1) and one nuclear region (internal transcribed spacer 2, ITS2) from two O. urda populations (Yangyang and Mt. Hanla) and one O. mongolica population (Uljin) were performed for phylogenetic and population genetic inferences. Sharing of identical sequences in the ND6 gene and ITS2, minimal sequence divergence in the COI and ND1 genes, and phylogenetically undividable sequence types in all mitochondrial genes and ITS2 suggest genetic continuity between the two species. Nevertheless, significant FST estimates (p < 0.05) were found for the COI gene in comparisons between Yangyang (O. urda) and Uljin (O. mongolica), between Yangyang (O. urda) and Mt. Hanla (O. urda), and between Uljin (O. mongolica) and Mt. Hanla (O. urda) populations. These FST estimates, along with other gene-based analyses collectively suggest isolation of the two species at some point in the past, but incomplete separation between the two species on the mainland (Yangyang and Uljin) and biogeographically forced isolation of the O. urda population on Mt. Hanla collectively appear to complicate species status of these two species that were once further clearly separated.
The phylogenetic relationships among the Nymphalidae (Lepidoptera: Papilionoidea) have been controversial in several perspective. The present study sequenced a total of ~ 3,500 bp from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) in 80 nymphalid species belonging to seven subfamilies (Linmenitidinae, Heliconiinae, Nymphalinae, Apaturinae, Libytheinae, Satyrinae, and Danainae), along with those of six lycaenid species as outgroups. Phylogenetic analyses via Bayesian Inference (BI) and Maximum Likelihood (ML) algorithms concordantly supported the subfamilial relationships of (((((Linmenitidinae + Heliconiinae) + (Nymphalinae + Apaturinae)) + Libytheinae) + Satyrinae) + Danainae), with high nodal support for monophyletic subfamilies and tribes. This result is largely consistent with a previous study performed with a substantially large sequence information and morphological characters, except for the position of Libytheinae that has previously been placed as the sister to all reminder of Nymphalidae.
The complete mitogenome (20,456 bp) of Challia fletcheri (Dermaptera: Pygidicranidae) as the first dermapteran insect is the longest among sequenced insects. The genome contained typical gene sets, but harbored the largest TRU among Exopterygota and Palaeoptera. The AT- and GC-skewness showed more Ts and Gs encoded on the major strand, whereas more As and Cs on the minor strand, presenting a reversal to the general pattern found in most insect mitogenomes. This pattern was explained in terms of inversion of replication origin. The gene arrangement of C. fletcheri genome is unique in insects and differs from the ancestral type found in insects by a series of gene translocations and/or inversions. We hypothesize that the markedly different gene arrangement is probably due to some unique organism-level properties, which allow relaxed selection against mitochondrial gene rearrangement. All phylogenetic analyses consistently placed Orthoptera as the sister to the group composed of a monophyletic Isoptera + Mantodea + Blattodea and a monophyletic Grylloblattodea + Mantophasmatodea + Phasmatodea, and placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera.
The Scarites aterrimus (Coleoptera: Carabidae), is one of the carabid beetles dwelling exclusively on coastal sandy dunes. Recent habitat deterioration has greatly concerned population declines in several species dwelling on the coastal sandy dunes. Asa first step to establish long-term conservation strategy, we investigated the nation-wide magnitude and nature of genetic diversity of the species. As a first step, we sequenced a portion of mitochondrial COI gene, corresponding to “DNA Barcode” region (658 bp) from a total of 24 S. aterrimus individuals collected over nine sandy dunes belonging to four Korean provinces. The sequence analysis evidenced moderate to low magnitude of sequence diversity compared with other insect species distributed in Korean peninsula (0.152% to 0.912%). The presence of closely related haplotypes and relatively high gene flow estimate collectively suggest that there had been no historical barriers that bolster genetic subdivision. Population decline was postulated on the basis of several missing haplotypes that are well found in the species with a large population size. This interpretation is consistent with field observation of small population size in the coastal sandy dune habitats. The highest genetic diversity estimates were found in the coastal sand dune population of Seogwipo, Jeju Island, justifying a prior attention to the population, in order to sustain overall genetic diversity of the species. Further scrutinized study might be required for further robust conclusion.
The phylogenetic relationships among the Nymphalidae (Lepidoptera: Papilionoidea) have been controversial. The present study sequenced approximately 1,099 bp from cytochrome oxidase subunit I (COI), 1,336 ~ 1,551 bp from 16S ribosomal RNA (16S rRNA), and 1,066 bp from elongation factor-1 alpha (EF-1α) in 80 species belonging to seven subfamilies (Linmenitidinae, Heliconiinae, Nymphalinae, Apaturinae, Libytheinae, Satyrinae, and Danainae) of Nymphalidae, along with those of six lycaenid species as outgroups. The average base compositions for the three genes (COI, 16S rRNA, and EF-1α) are as follows: A (30.6%, 38.8%, and 25.8%), G (14.7, 5.2%, and 23.6%), T (39.8%, 45.2%, and 23.4%), and C (14.9%, 10.8%, and 27.3%). This result shows the A/T bias in the mitochondrial genes, but not for the nuclear EF-1α. Between the two mitochondrial genes, the 16S rRNA gene evidenced a significantly higher A/T content than was detected in the COI gene. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI) and Maximum Likelihood (ML) algorithms. Both analyses concordantly supported the subfamilial relationships of (((((Linmenitidinae + Heliconiinae) + (Nymphalinae + Apaturinae)) + Libytheinae) + Satyrinae) + Danainae), along with highly supported monophyletics of tribes within subfamilies. This result is largely consistent with a previous study performed with a large sequence information and morphological characters, except for the position of Libytheinae, which was suggested to be the basal lineage of Nymphalidae.
Two complete mitochondrial genomes of the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuoidea) and the rice leaf roller, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), were sequenced. Each 15,388 bp and 15,368 bp-long genome contained both the lepidopteran specific gene arrangement that differ from the most common arrangement of insects by the movement of tRNAMet to a position 5’-upstream of tRNAIle. Neither of the species have typical COI start codon. Instead, the CGA (arginine) sequence that is commonly present in other lepidopterans was also found both in S. litura and C. medinalis. The evolutionary rates among 13 protein-coding genes (PCGs) in Lepidoptera showed ATP8 the highest, whereas COI the lowest. The high A+T-content, which is characteristic of mitochondrial genome was well reflected in the two lepidopteran mitochondrial genomes: higher frequency of A/T-rich codons, severe A/T bias in 3rd codon position, and extremely high A/T content in the A+T-rich region. Because insect mitochondrial genomes harbor biased nucleotide and resultantly biased amino acid sequences, phylogenetic inference is often misled by them. Although each recoded and unrecoded datasets for nucleotide sequences and amino acid sequences of PCGs provided overall identical topology, regardless of recoded scheme, each nucleotide and amino acid dataset provided difference in the status of Macrolepidoptera, providing a monophyletic group by amino acid dataset, whereas non-monophyletic group by nucleotide dataset.
The rice leaf roller, Cnaphalocroci smedinalis Guenée (Lepidoptera: Pyralidae) is a leaf-feeding pest of rice world-widely distributed. For better understanding of the pest insect, geographic sequence variation of the species were performed using the mitochondrial A+T-rich region, with the samples collected from seven Korean and six Chinese localities. A total of 94 haplotypes obtained from 187 individuals showed the length variation, ranging from 339 bp to 348 bp. The maximum divergence of 4.57% appears to evidence a substantial sequence variation, indicating the applicability of this molecular marker to the study of geographic variation. Overall, a high per generation migration ratio (Nm = 3.67742 ~ infinite), a low level of genetic fixation (FST = 0 ~ 0.11969), and no discernable isolated population were noted in the most C. medinalis populations. AMOVA analysis to find out allocation of genetic variability of C. medinalis populations has shown allocation of majority of variation to the within-population, rather than among-populations and between-region, suggesting that the C. medinalis populations in both China and Korea are largely well connected. This result is consistent with current knowledge of the dispersal ability of the species. The structure analysis of the A+T-rich region has shown that the typical structural elements found in other lepidopteran insects also is well preserved in the C. medinalis A+T-rich region (i.e., a poly-T stretch and a microsatellite-like A/T repeat).
The phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy, and that debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of eight outgroup species belonging to the skipper family (superfamily Hesperioidea). These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. All phylogenetic analyses among the four true butterfly families strongly indicated a sister relationship between the Nymphalidae and Lycaenidae on one hand, and relatively strongly indicated a sister relationship between the Pieridae and Papilionidae on another hand, thus supporting the hypothesis: (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae).
The bumblebee, Bombus ignitus (Hymenoptera: Apidae), is a valuable natural resource that is one of the most notably utilized for greenhouse pollination in Korea. In order to understand the nature of genetic relationships, gene flow, and population structure of the species we sequenced a partial COI gene of mitochondrial DNA (mtDNA) corresponding to “animal barcode” region and the complete internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA (nrDNA) collected from Korean localities. Although the 658-bp long mtDNA sequence provided only six haplotypes with the maximum sequence divergence of 0.61% (4 bp), the ITS sequences provided 84 sequence types with the maximum sequence divergence of 1.02% (21 sites), confirming better applicability of the ITS sequences to the study of intraspecific variation. The complete ITS2 sequences of B. ignitus were shown to be longest among known insects, ranging in size from 2,034 bp ~ 2,052 bp, harboring two duplicated repeats. Overall, a very high per generation migration ratio, a very low level of genetic fixation, and no discernable hierarchical population/ population group were noted to exist among populations of B. ignitus on the basis of both molecules, thus suggesting that the B. ignitus populations on the Korean peninsula are panmictic, which is consistent with our understanding of the dispersal capability of the species
In an effort to gain a better understanding of the nature of the population genetic structure of the pest insect, Spodoptera litura (Lepidoptera: Noctuidae), tobacco cutworms were collected from six Korean and five Chinese localities and their mitochondrial A+T-rich region and nuclear internal transcribed spacer 2 (ITS2) regions were cloned and sequenced. A total of 106 A+T-rich region haplotypes and 92 ITS2 sequence types were obtained from 158 individuals. Compared to the preliminary mitochondrial COI gene sequence data that provided all identical sequence types in all samples, the A+T-rich region and nuclear ITS2 are highly variable. Overall, a low level of genetic fixation in the A+T-rich region (FST = 0 ~ 0.02965) and nuclear ITS2 (FST = 0 ~ 0.34491), and no discernable isolated population was noted to exist among most S. litura populations. The presence of a majority of within-population variations, rather than variations among populations or between China and Korea, indicates that the S. litura populations are composed of heterogeneous individuals. The fixation index at hierarchical level of among regions shows no significance, suggesting that the S. litura populations in both Korea and China are profoundly interrelated with one another. This finding is in accord with the current knowledge that S. litura has sufficient flight capacity for dispersal.
In order to understand the nature of population genetic structure of the notorious pest insect, Spodoptera litura (Lepidoptera: Noctuidae), a total of 159 individuals of the tobacco cutworm collected from six Korean and five Chinese localities were cloned and sequenced their mitochondrial A+T-rich region. A total of 90 haplotypes ranged 324 bp ~ 372 bp in length and 0.30% ~ 4.85% in sequence divergence. Compared to the preliminary mitochondrial COI gene sequence data that provided nearly identical sequences in all samples, the A+T-rich region provided substantially high sequence variation, validating the applicability of this molecule to the study of intraspecific variation. Overall, a very high per generation migration ratio (Nm = 5.91 ~ infinite), a very low level of genetic fixation (FST = 0 ~ 0.077796), and no discernable isolated population were noted to exist among populations of S. litura, although some significant genetic differentiations were found between several pairs of populations. These results collectively suggest that the S. litura populations in both Korea and China are very well interrelated to each other. The structural analysis revealed that the S. litura A+T-rich region harbored two stretches of the [TA(A)]n sequence, the poly-A stretch, and a stem-and-loop structure that are well found in other lepidopteran A+T-rich region. Furthermore, the region harbors the 13 ~ 19-bp long T stretch and 5-bp long motif that have been suggested to function as a possible recognition site for the initiation of replication of the minor strand of mtDNA also were found.
The bumblebee, Bombus ignitus (Hymenoptera: Apidae), is a valuable natural resource that is one of the most notably utilized for greenhouse pollination in Korea. In order to understand the nature of genetic relationships, gene flow, and population structure of the species we sequenced a partial COI gene of mitochondrial DNA (mtDNA) corresponding to “animal barcode” region and the complete internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA (nrDNA) with the individuals collected from Korean localities. Although the 658-bp long mtDNA sequence provided only six haplotypes with the maximum sequence divergence of 0.456% (3 bp, from 91 individuals), but the ITS sequences provided 33 sequence types with the maximum sequence divergence of 0.78% (16 bp, from 35 individuals), confirming better applicability of the ITS sequences to the study of intraspecific variation. The ITS2 sequences of B. ignitus were shown to be the longest among known insects, ranging in size from 2,034 bp ~ 2,045 bp and harbored two duplicated repeats, indicating unusual structure of B. ignitus ITS2 sequences compared with other insect ITS sequences. Overall, a very high per generation migration ratio, a very low level of genetic fixation, and no discernable hierarchical population/population group were noted to exist among populations of B. ignitus on the basis of both molecules, thus suggesting that the B. ignitus populations on the Korean peninsula are panmictic, which is consistent with our understanding of the dispersal capability.
Eumenis autonoe, a member of the lepidopteran family Nymphalidae (superfamily Papilionoidea) is an endangered species, and is found only on one isolated remote island, Jeju in South Korea, on Halla Mt., at altitudes higher than 1,400 meters. In this study, we report the complete mitochondrial genome (mitogenome) of E. autonoe. The 15,489-bp long E. autonoe genome evidenced the typical gene content found in animal mitogenomes, and harbors the gene arrangement identical to all other sequenced lepidopteran insects, which differs from the most common type found in insects, due to the movement of tRNAMet to a position 5’-upstream of tRNAIle. As has been observed in many other lepidopteran insects, no typical ATN codon for the COI gene is available. Thus, we also designated the CGA (arginine) found at the beginning of the COI gene as a lepidopteran COI starter, in accordance with previous suggestions. The 678-bp long A+T-rich region, which is second longest in sequenced lepidopteran insects, harbors 10 identical 27-bp long tandem repeats plus one 13-bp long incomplete final repeat. Such a repeat sequence has been, thus far, only rarely detected in lepidopteran mitogenomes. The E. autonoe A+T-rich region harbors a poly-T stretch of 19 bp and a conserved ATAGA motif located at the end of the region, which have been suggested to function as structural signals for minor-strand mtDNA replication.
There has been a substantial controversy on the phylogenetic relationships among butterfly families and several competing phylogenetic hypothesis have been suggested. Among them the relationships of (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae) has been further widely accepted. In this study, we sequenced EF1-α, COI, and 16S rRNA from 62 species belonging to four true butterfly families, Papilionoidea. Phylogenetic analyses using BI, ML, and MP showed that the traditionally recognizable families were strongly supported as monophyletic groups, with the exception of Nymphalidae, wherein the singly included species of Danainae was placed as basal lineage of the Nymphalidae + Lycaenidae group. Phylogenetic relationships among families supported the sister group relationship of Nymphalidae and Lycaenidae strongly by all analyses and placed Papilionidae as the most basal lineage of the Papilionoidea. On the other hand, the relationships of Nymphalidae and Lycaenidae group to Pieridae were either unresolved, revealing trichotomy, or the relationships of (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae) as previously supported by several morphological and molecular works supported. Detailed within-family relationships among some genera also are shown in the presentation.
Root knot nematode species, such as Meloidogyne hapla, M. incognita, M. arenaria and M. javanica are economically most notorious nematode pests, causing serious damage to the various crops throughout world. In this study, DNA sequence analyses of the D1-D3 expansion segments of the 28S gene in the ribosomal DNA were conducted to characterize genetic variation of the four Meloidogyne species obtained from Korea and United States. PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism), SCAR (Sequence Characterized Amplified Region) marker and RAPD (Random Amplification of Polymorphic DNA) also were used to develop the methods for exact and rapid species identification. In the sequence analysis of the D1-D3 expansion segments, only a few nucleotide sequence variation were detected among M. incognita, M. arenaria, and M. javanica, except for M. hapla. The PCR-RFLP analysis that involves amplification of the mitochondrial COII and lrRNA region yielded one distinct amplicon for M. hapla at 500 bp, enabling us to distinguish M. hapla from M. incognita, M. arenaria, M. javanica reproduced by obligate mitotic parthenogenesis. SCAR markers successfully identified the four root knot nematode species tested. We are under development of RAPD primers specific to the three root knot nematodes found in Korea.