검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 637

        261.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium carbonitride is more perspective materials compared to titanium carbide. It can be used in tool industry and special products because of its higher strength, abrasive wear-resistance and especially its strong chemical stability at high temperatures. We produced STS+TiCxNy composite by the spark plasma sintering for higher strength and studied the characteristics. The planar and cross-sectional microstructures of the specimens were observed by scanning electron microscopy. Characterizations of the carbon and nitride phases on the surface of composite were carried out using an X-ray diffractometer. During annealing TiCxNy particles diffusion into STS 430 was observed. After annealing, sintering isolations between particles were formed. It causes decreasing of mechanical strength. In addition when annealing temperature was increased hardness increased. Heterogeneous distribution of alloying elements particles was observed. After annealing composites, highest value of hardness was 738.1 MHV.
        4,000원
        262.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al/AlN composites were synthesized by mechanical alloying using process control agents(PCAs). Three different PCAs which contain N element, were examined to see the effectiveness of ball-milling and the nitridation during sintering. Among examined PCAs, was the most effective to facilitate ball-milling and to form nitrides during a subsequent sintering. By a proper control of ball-milling and sintering, we could obtained surface-hardened Al-based composites.
        4,000원
        263.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Perovskite manganites such as RE1-xAxMnO3 (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature (Tc). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 [(LCSMO)0.99/(BTO)0.01]were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature Tc shifts to a lower range.
        3,000원
        264.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.
        4,000원
        265.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PVDF was used as a polymeric matrix material in this work. Nickel powders with average particles size of 200 nm or 72 nm were used as fillers. PVDF/metal submicro- and nanocomposites were prepared by means of a mixing in twin screw extruder and planetary ball mill, respectively. All samples were prepared by hot pressing method. Their electrical, thermal and morphological properties were examined by dielectric spectroscopy, DSC, FTIR, XRD, optical microscopy and scanning electron microscopy. It was found that all properties of composites were strongly modified depending on the content of metal powders and filler particles size. Particularly, specific volume resistivity of PVDF/Ni composite with 0.2 wt.% of Ni was increased by factor of 1.5~4.
        4,000원
        266.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to investigate the influence of mesoporous carbons on the thermal insulation properties of epoxy/mesoporous carbon composites. The mesoporous carbon (CMK-3) was prepared by conventional templating method using SBA-15. The epoxy/mesoporous carbon composites were prepared by mixing the synthesized CMK-3 with diglycidylether of bisphenol A (DGEBA). As experimental results, the curing reactivities of the DGEBA/CMK-3 composites were found to decrease with the addition of the CMK-3. Also, the thermal conductivities of DGEBA/CMK-3 composites were found to decrease with increasing CMK-3 content. This could be interpreted in terms of the slow thermal diffusion rate resulting in pore volume existing in the gaps in the interfaces between the mesoporous carbon and the DGEBA matrix.
        3,000원
        267.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.
        4,000원
        268.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To manufacture a carbon/carbon composite the coal tar pitch was used as the matrix precursor and the PAN (polyacrylonitrile)-based carbon fiber was used as the reinforcing material to weave 3-directional preform. For pressure carbonization HIP equipment was used to produce a maximum temperature of 1000℃ and a maximum pressure of 100 MPa. The carbonization was induced by altering the dwell temperature between 250℃ and 420℃, which is an ideal temperature for the moderate growth of the mesophase nucleus that forms within the molten pitch during the pressure carbonization process. The application of high pressure during the carbonization process inhibits the mesophase growth and leads to the formation of spherical carbon particles that are approximately 30 nm in size. Most particles were spherical, but some particles were irregularly shaped. The spread of the carbon particles was larger on the surface of the carbon fiber than in the interior of the matrix pocket.
        4,000원
        269.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A method of functionalization of multi-walled carbon nanotube (MWNT) at room temperature using dry ozone gas is described. The resulting MWNT were characterized by Fourier transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. Combined to these analyses and solubility in liquids, it could be concluded that the dry ozone gas exposure introduces polar functional groups such as carboxylic groups to MWNT similar to acidic modification of MWNT. Particularly, the stable dispersion of MWNT in water after ozone treatment above a critical level could be obtained, implying potential bio-application. The hydrophilic functional groups on the MWNT introduced by ozone oxidation were helpful in improving the interaction with functional groups in PA6 such as -NH2 and -CONH- resulting in improved mechanical properties.
        4,000원
        270.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate new potential application of a clay material for C/C composites, illite added C/C composites were prepared with various illite contents. The improvement of filler effect by illite size reduction was also investigated using wet ballmilling by evaluating illite/phenolic resin infiltration using bulk density and porosity measurements, chemical structural changes of the composites using XRD, and thermal oxidation stability in air of the composites using TGA. The size reduction of illite resulted in narrower particle size distribution and improved illite infiltration into carbon preform. And the resultant C/C composites prepared with illite had even more improved thermal oxidation stability in air, showing more increased IDTs up to 100℃, compared to those of the C/C composites with pristine illite, due to the SiC formation through carbothermal reduction between illite and carbon materials. The illite induced delay in oxidation of the illite-C/C composites was also observed and the delayed oxidation behavior was attributed to the layered structure of illite, which improved illite/phenol resin infiltration. Therefore, the potential use of illite as filler to improve oxidation stability of C/C composite can be promising. And the size reduction of illite can improve its effect on the desired properties of illite-C/C composites even more.
        4,000원
        271.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above 350℃. The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of -25℃ to 50℃. The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.
        4,000원
        272.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized SiO2 substrates followed by sputter deposition of Zn and thermal oxidation at 400˚C in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of 150-300˚C. The highest sensor responses were observed at 300˚C in ZnO film and 250˚C in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of 250˚C.
        4,000원
        273.
        2010.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of load and sliding speed on abrasive wear characteristics of glass fiber/polyurethane (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. Experimental results showed that the surface roughness of the GF/PUR composites was increased as applied load was higher in wear test. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on applied load and sliding speed for these composites. It could be verified by scanning electric microscopy (SEM) photograph of surface tested that major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking.
        4,000원
        274.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen energy had recognized clean and high efficiency energy source. The research field of hydrogen energy was production, storage, application and transport. The commercial storage method was using high pressure tanks but it was not safety. However metal hydride was very safety due to high chemical stability. Mg and Mg alloys are attractive as hydrogen storage materials because of their lightweight and high absorption capacity (about 7.6 wt%). Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved. The main emphasis of this study was to find an economical manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. In order to examine their hydrogenation behavior, a Sievert's type automatic pressure-compositionisotherm (PCI) apparatus was used and experiments were performed at 423, 473, 523, 573, 623 and 673 K. The results of the thermogravimetric analysis (TGA) revealed that the absorbed hydrogen contents were around 2.5wt.% for (Mg8Ti2)-10 wt.%Ni. With an increasing Ni content, the absorbed hydrogen content decreased to 1.7 wt%, whereas the dehydriding starting temperatures were lowered by some 70-100 K. The results of PCI on (Mg8Ti2)-20 wt.%Ni showed that its hydrogen capacity was around 5.5 wt% and its reversible capacity and plateau pressure were also excellent at 623 K and 673 K.
        4,000원
        276.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al2O3 has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, Al2O3-CuO/ZnO (ACZ) and Al2O3-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 m2/g to 142 m2/g, and the ACC powders from 103 m2/g to 140 m2/g, respectively.
        4,000원
        277.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Composites of ceramic powders and an elastomer-based matrix were prepared by mixing CaCO3 powders with polyethylene and polypropylene elastomers, and their mechanical and sound insulation properties were measured. CaCO3 powders with 0.7 μm and 35 μm particle size were added to elastomers up to 80 wt%. Scanning electron microscopy photographs showed uniform distribution of the CaCO3 powders in the matrix. While density and surface hardness increased, melt index, tensile strength and elongation of the composites decreased as the amount of added CaCO3 powders increased. As more CaCO3 powders were added sound transmission loss of the composites increased owing to the increase of density. Addition of 0.7 μm sized CaCO3 powders resulted in a slightly higher transmission loss than the addition of 35 μm sized powders because of the increased interface area between the elastomer matrix and the CaCO3 powders. Composites with a polyethylene matrix showed higher transmission loss than those with a polypropylene matrix because the tensile strength and hardness of the polyethylene-based composites were low and their elongation was high.
        4,000원
        278.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride (CoCl2) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/TiO2 composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/TiO2 composites were characterized by N2 adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. N2 adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was 389 m2/g. From the XRD results, the Co-AC/TiO2 composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/TiO2 composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, C14H14N3NaO3S) and rhodamine B (Rh.B, C28H31ClN2O3) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by TiO2. Especially, the Co particles in the Co-AC/TiO2 composites could enhance the photo degradation behaviors of TiO2 under visible light.
        4,000원
        279.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dispersion of the functionalized multiwalled nanotubes (MWNT) in the polyurethane (PU) matrix and DC conductivity of the MWNT/PU composites are investigated with the oxidation conditions, the kind of surfactants and their content. First, the most optimal surfactant type and its critical micelle concentration in the MWNT suspension are determined as a cationic surfactant, benzalkonium chloride (BKC) of 0.6 wt.% to the MWNT content from DEA and FESEM results. All the MWNT oxidized under several conditions are negatively charged and functionalized with carboxylic group, whereas the degree of damage is different from oxidation conditions. In addition, each MWNT/PU composite derived from several oxidation conditions shows different DC conductivity at a characteristic MWNT content. It is found that in order to enhance DC conductivity of the polymeric composites containing the oxidized MWNT the better dispersion of MWNT should be obtained by effective functionalities and surfactant adsorption with preserving the intrinsic geometry of pristine MWNT.
        4,000원