검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 154

        21.
        2022.10 구독 인증기관·개인회원 무료
        Nuclear power plants decommissioning is planned to be started in middle of the 2020. It is necessary to develop safety evaluation and verification technology during decommissioning to ensure the safety of security monitoring measures and maintenance measures, appropriate emergency plans and preparations for decommissioning, and the use of proven engineering when establishing decommissioning plan. For this purpose, a nuclear power plant decommissioning plan is prepared in several stages before decommissioning. When a lifetime of a nuclear power plant has reached, it needs to be decommissioned and therefore operator company should submit decommissioning plans to the National Safety and Security Commission. And safety analysis should be included in this document and it is explained in chapter 6. According to the NSSC Notice No. 2021-10, it is largely divided into principles and standards, exposure scenarios, dose assessment, residual radioactivity, abnormal events, and risk analysis. When unexpected radiological accident is happened, both public and occupational dose analysis should be conducted. However, research on the former can be found easily on the other hands, research on the latter is not active. In this paper, method of choosing scenarios of accidents during the decommissioning the nuclear power plants is briefly introduced. Accidents during nuclear power plants decommissioning cases in USA is chosen and its risk is evaluated by using risk matrix and ranked by AHP method. During the decommissioning phases, varieties of radioactive waste is expected to be generated such as contaminated concrete and metal. On the other hand, Dry Active Waste (DAW) is generated and its amount is and its amount is 7,353 drums. Characteristic of DAW is highly flammable compared to concrete or metal. Moreover, depending on method of radioactive waste conditioning and type of radioactive nuclides, release rate of the nuclides varies. Thus this type of radioactive waste is critical to fire accidents and such accident can occur extra dose exposure which exceeds the guideline of the regulatory body to workers. Therefore, in this paper, occupational dose exposure during the fire accident is conducted.
        22.
        2022.10 구독 인증기관·개인회원 무료
        Under Article 17 of the Radioactive Waste Management Act and Article 12 of the Enforcement Decree of the Radioactive Waste Management Act, KHNP shall reserve the cost for the decommissioning of NPPs as provisions. To preserve the value, an additional amount considering the discount rate is to be added annually. The initial provision is decided by estimating the decommissioning cost of NPP at the time of commercial operation, calculating the future cost by applying the inflation rate to the expected start date of decommissioning, and then discounting it at a discount rate to the present value. According to the current notice, the period for applying inflation and discount rate is defined as the period of 5 years added to the design life of NPP, which is presumed to be due to the assumption that all decommissioning costs are incurred at once 5 years after the permanent shutdown of the power plant. However, assuming that the actual decommissioning period of a domestic nuclear power plant is generally planned for 15 years, it can be expected that most of the decommissioning activities will begin after the decommissioning preparation and transition period, or 5 years after permanent shutdown of the plant. Considering this, it can be said that the current period (5 years + design life) for applying inflation and discount rate is set a little conservatively. In this paper, the initial provision is calculated by appropriately distributing the decommissioning costs of overseas NPPs categorized by International Structure for Decommissioning Costing (ISDC) during the planned decommissioning period of domestic NPPs, and then adding up the decommissioning cost each year by separately applying the inflation and discount period, which was compared with the results calculated using the current method. Through this, it was confirmed that the revised method had the effect of reducing the initial provision by 2.2% to 5.7% compared to the current method depending on the gap between inflation rate and discount rate, which can be converted to about 8 years of inflation and discount period used in the current method. It is expected that this paper will be used in the future as a basic reference for developing a more accurate method for calculating the initial provision of decommissioning cost.
        23.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive waste generated in large quantities from NPP decommissioning has various physicochemical and radiological characteristics, and therefore treatment technologies suitable for those characteristics should be developed. Radioactively contaminated concrete waste is one of major decommissioning wastes. The disposal cost of radioactive concrete waste is considerable portion for the total budget of NPP decommissioning. In this study, we developed an integrated technology with thermomechanical and chemical methods for volume reduction of concrete waste and stabilization of secondary waste. The unit devices for the treatment process were also studied at bench-scale tests. The volume of radioactive concrete waste was effectively reduced by separating clean aggregate from the concrete. The separated aggregate satisfied the clearance criteria in the test using radionuclides. The treatment of secondary waste from the chemical separation step was optimally designed, and the stabilization method was found for the waste form to meet the final disposal criteria in the repository site. The final volume reduction rates of 56.4~75.4% were possible according to the application scenario of our processes under simulated conditions. The commercial-scale system designs for the thermomechanical and chemical processes were completed. Also, it was found that the disposal cost for the contaminated concrete waste at domestic NPP could be reduced by more than 20 billion won per each unit. Therefore, it is expected that the application of this technology will improve the utilization of the radioactive waste disposal space and significantly reduce the waste disposal cost.
        24.
        2022.10 구독 인증기관·개인회원 무료
        Trojan Nuclear Power Plant (NPP), a four-loop PWR designed by Westinghouse and owned by Portland General Electric (PGE), reached its initial threshold in 1975 and was operational until November 1992. PGE received a Possession Only License from the NRC in May 1993. In 1995, limited decommissioning activities began at the Trojan, including the completion of a large components removal project to remove and dispose of four steam generators and pressurizers from the containment building. In April 1996, the NRC approved a plan to dismantling the Trojan NPP and began more aggressive component removal activities. At the end of 1998, part of the radioactive drainage system began to be removed, and embedded piping decontamination and survey activities began. Trojan NPP has more than 8,840 m of contaminated pipelines throughout the power block. Most of Trojan NPP’s contaminated embedded piping can generally be divided into four categories drainage piping, ventilation ducts, buried process piping, and other items. For the Trojan NPP, the complete removal of contaminated and embedded piping without damaging the building would have significantly increased costs due to the structural considerations of the building and the depth of the embedded pipe. Therefore, Trojan NPP has chosen to conduct the Embedded Pipe Remediation Project (EPRP) to clean and in situ survey of most of the embedded piping to meet the Final Site Survey (FSS) acceptance criteria, with much success. This study provides a discussion of EPRP activities in the Trojan NPP, including classification and characterization of affected piping, modeling of proposed contamination acceptance criteria, and evaluation of various decontamination and survey techniques. It describes the decontamination tools, techniques, and survey equipment and the condition of work and cost estimate costs used in these projects. To identify embedded piping and drains at the Trojan NPP, based on frequent site surveys, plan sketches showing an overview of system flow paths and connections and database were developed to identify drain inputs and headers. This approach effort has been a successful method of remediation and site survey activities. The developed database was a valuable asset to the EPRP and a Work Breakdown Structure (WBS) code was assigned to each drains and headers, allowing the embedded piping to be integrated into the decommissioning cost estimation software (Decon. Expert) and schedule, which aided in decommissioning cost estimation. Also, regular database updates made it easy to check the status of the decommissioning project data. The waste system drain at Trojan NPP was heavily contaminated. The goal of the remediation effort is to completely remove all removable contamination and to reduce the fixed contamination below the decided contamination acceptance criteria. Accordingly, Hydrolysis, Media blast, Chemical decontamination and Pipe removal were considered as remediation option. Trojan NPP’s drainage pipe decontamination option did not cause a significant corrosion layer inside the pipe and media blast was chosen as the main method for stainless steel pipe. In particular, the decommissioning owner decontaminates most of the embedded piping in-situ to meet the FSS acceptance criteria for economic feasibility in Trojan NPP. The remaining pipe was filled with grout to prevent leaching and spreading of contamination inside the pipe. In-situ decontamination and survey of most of these contaminated pipes are considered the most cost-effective option.
        25.
        2022.10 구독 인증기관·개인회원 무료
        A significant amount of piping is embedded in nuclear power plants (NPPs). In decommissioning these materials must be removed and cleaned. It can then be evaluated for radioactivity content below the release level. MARSSIM presents Derived Concentration Guideline Levels (DCGLs) that meet release guidelines. Calculating DCGL requires scenarios for the placement of embedded pipe and its long-term potential location or use. Some NPPs choose to keep the embedded pipes in the building. Because others will dismantle the building and dispose of the piping in-situ, determining the disposal option for embedded piping requires the use of measurement techniques with the sensitivity and accuracy necessary to measure the level of radioactive contamination of embedded piping and meet DCGL guidelines. The main measuring detectors used in NPPs are gas counters that are remotely controlled as they move along the inside of the pipe. The Geiger-Mueller (GM) detector is a detector commonly used in the nuclear field. Typically, this GM detector used 3-detectors that cover the entire perimeter of the pipe and are positioned at 120-degrees to each other. This is called a pipe crawler. It is very insensitive to gamma and X-ray, only measures beta-emitter and does not provide nuclide identification. The second method is a method using a high-resolution gamma-ray detector. Although not yet commercialized in many places, embedded piping is a scanning method. The technique only detects gamma-emitting nuclides, but some nuclides can be identified. Gamma-ray scanning identifies the average concentration per pipe length by the detector collimator. It is considerably longer than a pipe crawler. In addition, several techniques, including direct measurement of dose rate and radiochemical analysis after scraping sampling, are used and they must be used complementary to each other to determine the source term. Expensive sampling and radiochemical analysis can be reduced if these detectors are used to measure the radioactivity profile and to perform waste classification using scaling factor. In the actual Trojan NPP, a pipe crawler detector was used to survey the activity profile in a 26 foot of an embedded pipe. These results indicate that the geometric averaging of the factors and a dispersion values for each nuclide are constant within the accuracy factors. However, in order to accurately use the scaling factor in waste classification, it must have sample representativeness. Whether the sample through smear or scraping is representative of the radionuclide mixture in the pipe. Since the concentration varies according to the thickness of the deposit and depending on the location of the junction or bend, a lot of data are needed to confirm the reliability of the nuclide mixture. In this study, the reliability of the scaling factor, sampling representativeness and concentration measurement accuracy problems for waste classification in decommissioning NPP were evaluated and various techniques for measuring radioactive contamination on the inner surface of embedded pipes were surveyed and described. In addition, the advantages and limitations of detectors used to measure radioactivity concentrations in embedded piping are described. If this is used, it is expected that it will be helpful in determining the source term of the pipe embedded in the NPPs.
        26.
        2022.10 구독 인증기관·개인회원 무료
        The decommissioning project of NPP is a large-scale project, with various risks. Successful implementation of the project requires appropriate identification and management of risks. IAEA considered risk management “To maximize opportunities and to minimize threats by providing a framework to control risk at all levels in the organization”. Framework-based risk management allows project managers to identify key areas in which action should be taken at an appropriate time. Also, it enables effective management of projects by supporting decision-making on sub-uncertainty. Risk could be categorized according to the source of the risk. This is called Risk Breakdown Structure (RBS), and is documented as a risk assumption register through a risk identification process. IAEA considers various factors when defining risks in accordance with ISO 31000:2009. IAEA SRS No.97 presents a recommended risk management methodology for the strategy and execution stage of the decommissioning project of nuclear facilities through the DRiMa project conducted from 2012 to 2015. The risk breakdown structure classified in DRiMa project is as follows: (1) Initial condition of facility, (2) End state of decommissioning project, (3) Management of waste and materials, (4) Organization and human resources, (5) Finance, (6) Interfaces with contractors and suppliers, (7) Strategy and technology, (8) Legal and regulatory framework, (9) Safety, and (10) Interested parties. They have various prompts for each category. Such a strategy for dealing with risks has negative risks (threats) or positive risks (opportunities). The negative risks are as shown in avoid, transfer, mitigate and accept. On the other side, the positive risks are as shown in exploit, share, enhance and accept. During the decommissioning, a contingency infrastructure is needed to decrease the probability of unexpected events caused by negative risks. The contingency infrastructure of decommissioning project includes organization, funding, planning, legislation & regulations, information, training, stakeholder involvement, and modifications to existing programs. Since all nuclear facilities have different environmental, physical or contamination conditions, risks and treatment strategies should also be applied differently. This risk management process is expected to proceed at the stage of establishing and implementing a detailed plan for the decommissioning project of each individual plant.
        27.
        2022.10 구독 인증기관·개인회원 무료
        Minimizing of radiation exposure for the operating and decommissioning personnel is a key indicator for safe operation of the NPP. This is reflected in the application of the ALARA (As Low As Reasonable Achievable) principle. The main objectives of radiation management during full system decontamination for NPP decommissioning are to reduce the exposure dose, prevent contamination of the body and reduce solid radioactive waste. In order to reduce exposure of workers, the dose rate should be reduced by installing a temporary shield after evaluating the dose rate for the piping, component and decontamination equipment of the decontamination path before full system decontamination. Furthermore, unnecessary exposure to radiation should be reduced by thoroughly entering and exciting the radiation area and limiting the access to the high-radiation area except for workers or persons concerned. A telemetric dosimetry system should be as installed to remotely monitor radiation levels at different locations within the decontamination flow path. Remote monitoring of radiation fields using teledosimetry worked well in assessing process effectiveness and is highly recommended. However, care must be taken to place the detectors in appropriate locations. For the prevent of body contamination, it is necessary to install a fence using a heat-resistant waterproof sheet to prevent leakage of highly radioactive contamination water. When replacing high-dose filters and ion exchange resins, it is necessary to remotely monitor to reduce the exposure dose of workers.
        28.
        2022.10 구독 인증기관·개인회원 무료
        3D modeling is a technology for representing real objects in a virtual 3D space or modeling and reproducing the physical environment. 2D drawings for viewing the existing building structure have limitations that make it difficult to understand the structure. By implementing this 3D modeling, specific visualization became possible. 3D technology is being applied in a wide range of preevaluation work required for nuclear decommissioning. In Slovakia, 3D modeling was applied to determine the optimal cutting strategy for the primary circuit before dismantling the VVER type Bohunice V1. In Japan, the Decommissioning Engineering Support System (DEXUS) program has been developed that incorporates VRDose, a decommissioning engineering support system based on 3D CAD models. Through this, the cutting length of the work object and the quantity of containers for packaging waste are calculated, exposure dose calculations in various dismantling scenarios, and cost estimation are performed. Korea also used 3D technology to evaluate the decommissioning waste volume for Kori Unit 1 and to evaluate the optimal scenario of the decommissioning process procedure for the research reactor Unit 1. 3D technology is currently being used in various pre-decommissioning evaluations for VVER, PWR, and research reactors. Overseas, a program that matches various decommissioning pre-evaluation tasks with cost estimation has also been developed. However, most 3D technologies are mainly used as a support system for dose evaluation and amount of decommissioning waste calculation. In this study, 3D modeling was performed on the PHWR structure, and physical and radiological information about the structure was provided. The information on the structure can present the unit cost for the work object by confirming the standard of the applied unit cost factor (UCF). The UCF presents the unit cost for repeated decommissioning operations. The decommissioning cost of the work object can be obtained by multiplying the UCF by the number of repetitions of the work. If the results of this study are combined with the process evaluation and waste quantity estimation performed in previous studies, it is judged that it will be helpful in developing an integrated NPP decommissioning program that requires preliminary evaluation of various tasks. In addition, it is judged that a clear cost estimation of the object to be evaluated will be possible by matching the 3D work object with the UCF.
        29.
        2022.10 구독 인증기관·개인회원 무료
        Recently, Japan’s government has announced Tokyo Electric Power Company’s plan to discharge contaminated water stored from the tanks of the Fukushima Daiichi nuclear power plant site into the sea. The contaminated water is treated by advanced liquid processing system (ALPS) to remove 62 radionuclide containing cesium, strontium, iodine and etc. using co-precipitation (or precipitation) and adsorption for other nuclides (except for tritium and carbon-14). The total amount of the contaminated water generated by ALPS facility is 1,311,736 m3 (as of August 18, 2022). The amount of contaminated water is estimated same as Tokyo dome volume. Under the sea discharge plan, the contaminated water will be diluted in seawater more than 100 times, and tritium concentration lowered 1/7 of the drinking water standard set by the World Health Organization (10,000 Bq/liters). The diluted water will then move through an undersea tunnel and be discharged about 1 kilometer off the coast.
        30.
        2022.10 구독 인증기관·개인회원 무료
        Waste containers for packaging, transportation and disposal of NPP (Nuclear Power Plant) decommissioning wastes are being developed. In this study, drop tests were conducted to prove the safety of containers for packaging of the wastes and to verify the reliability of the analysis results by comparing the test and analysis results. The drop height of the waste containers was considered to be 30 mm, which is the maximum lifting speed of a 50 tons crane in the waste treatment facility converted to the drop height. Drop orientation of the containers was considered for bottom-end on drop. The impact acceleration and strain data were obtained to verify the reliability of the analysis results. Before and after the drop tests, measurement of the dose rate and the radiographic testing for concrete wall, and measurement of the wall thickness of steel plate were conducted to evaluate the radiation shielding integrity. Also, measurement of bolt torque, and visual inspection were conducted to evaluate the loss or dispersion of radioactive contents. After the drop tests, the radiation dose rate on the container surface did not increase by more than 20%, and there was no crack in the concrete. In addition, the thickness of the steel plate did not change within the measurement error. Therefore, the radiation shielding integrity of the container was maintained. After the drop tests, the lid bolts were not damaged and there was no loss of pretension in the lid bolts. In addition, there was no loss or dispersion of the contents as a result of visual inspection. In order to prove the reliability of the drop analysis results, safety verifications were performed using the drop test results, and the appropriate conservatism for the analysis results and the validity of the analysis model were confirmed. Therefore, the structural integrity of the waste containers was maintained under the drop test conditions.
        31.
        2022.10 구독 인증기관·개인회원 무료
        Organic waste generated by small and medium-sized (S&M-sized) metal decontamination in NPP decommissioning. To lower the concentration of these organic substances for a level acceptable at the disposal site, the project of “Development of Treatment Process of Organic Decontamination Liquid Wastes from Decommissioning of Nuclear Power Plants” is being carried out. The conditioning and treatment process of organic liquid waste was designed. Also, the literature was investigated to make simulated organic liquid waste, and the composition of these waste was analyzed and compared. As the decontamination agent, organic acids such as EDTA, oxalic acid, citric acid are used. The sum of the concentrations of these organic materials was set to a maximum value of 1,000 ppm. The major metal ions of the decontamination liquid waste estimated are 59Fe, 51Cr, 54Mn, 63Ni, and the concentrations are respectively 527, 163, 161, 159 ppm. Additional major metal ions are 60Co, 58Co, 137Cs. 58Co is replaced by 60Co because it has the same chemical properties as 60Co. Unlike the HLW, the contamination level of S&M-sized metal in primary system was quite low, so 60Co is set to 2,000 Bq/g. Considering the contribution of fission and gamma ray dose constant, 137Cs was estimated to 360 Bq/g. Also, suspended solids of decontamination liquid waste were set at 500 ppm. Under these assumptions, the simulated organic liquid waste was made, and then organic substances and metal ions were analyzed with TOC analyzer and ICP-OES. The TOC analysis value was expected to 392 ppm in consideration of the equivalent organic quantity. the test result was 302 ppm. Some of organics appears to have been decomposed by acid. The values of metal ions (Fe3+, Cr3+, Mn2+, Ni2+) analyzed by ICP-OES are 139, 4, 152, 158 ppm, respectively. A large amount of Cr3+ and Fe3+ were expected to exist as ions, but they existed in the form of suspended solid. Mn2+ and Ni2+ came out similar to the expected values. The designed conditioning and treatment process is largely divided into pretreatment, conditioning, and decomposition processes. After collecting in the primary liquid waste storage tank, large particulate impurities and suspensions are removed through a pretreatment process. In the conditioning process, treated liquid waste passes through UF/RO membrane system, and pure water is discharged to the environment after monitoring. Concentrated water is decomposed in the electrochemical catalyst decomposition process, then this water secondarily passes through the RO membrane system and then discharged to the environment after monitoring. Through an additional experiment, the conditioning and treatment process will be verified.
        32.
        2022.05 구독 인증기관·개인회원 무료
        The spent filters stored in Kori Unit 1 are planned that compressed and disposed for volume reduction. However, shielding reinforcement is required to package high-dose spent filters in a 200 L drum. So, in this study suggests a shielding thickness that can satisfy the surface dose criteria of 10 mSv·h−1 when packaging several compressed spent filters into 200 L drums, and the number of drums required for the compressed spent filter packaging was calculated. In this study, representative gamma-emitting nuclides in spent filter are assumed that Co-60 and Cs-137, and dose reduction due to half-life is not considered, because the date of occurrence and nuclide information of the stored spent filter are not accurate. The shielding material is assumed to be concrete, and the thickness of the shielding is assumed to 18 cm considering the diameter of the spent filter and compression mold. Considering the height of the compressed spent filter and the internal height of the shielding drum, assuming the placement of the compressed spent filter in the drum in the vertical direction only, the maximum number of packaging of the compressed spent filter is 3. When applying a 18 cm thick concrete shield, the maximum dose of the spent filter can packaged in the drum is 125 mSv·h−1, so when packaging 3 spent filters of the same dose, the dose of a spent filter shall not exceed 41 mSv·h−1 and not exceed 62 mSv·h−1when packing 2 spent filters. Therefore, the dose ranges of spent filters that can be packaged in a drum are classified into three groups: 0–41 mSv·h−1, 41–62 mSv·h−1, and 62–125 mSv·h−1based on 41 mSv·h−1, 62 mSv·h−1, and 125 mSv·h−1. When 227 spent filters stored in the filter room are classified according to the above dose group, 207, 3 and 4 spent filters are distributed in each group, and the number of shielding drums required to pack the appropriate number of spent filters in each dose group is 75. Meanwhile, 8 spent filters exceeding 125 mSv·h−1 and 5 spent filters that has without dose information are excluded from compression and packaging until the treatment and disposal method are prepared. In the future, we will segmentation of waste filter dose groups through the consideration of dose reduction and horizontal placement of compressed spent filters, and derive the minimum number of drums required for compressed spent filter packaging.
        33.
        2022.05 구독 인증기관·개인회원 무료
        Decontamination and Dismantlement (D&D) are of great interest to owner of decommissioning as a large number of old nuclear facilities around the world are either shutdown or soon to be decommissioned. D&D are key steps in the decommissioning of nuclear power plants (NPPs). These activities typically generate a significant volume of radioactively contaminated waste. However, as much as 90% or more of this waste is lightly contaminated metal and concrete that could potentially be cleared for recycle or beneficial reuse, rather than disposed of as radioactive waste. The objective of this study is to provide reference for the application of current technologies to cost-effectively reduce the volume of radioactive waste associated with decommissioning, through review of experiences with decontamination of NPPs materials for unrestricted release, recycle or reuse, Also, highlights the importance of ongoing efforts to harmonize regulations and standards for radioactive waste management globally to enable reuse and recycle of valuable materials generated during decommissioning. The presented results in the balance of this study are organized to align with the sequence of operations for executing reuse or recycle of material for a decommissioning project. Concrete from buildings has most commonly been used for backfill of voids onsite, while metal has most commonly been melted or cleared into the conventional scrap recycling industry. Copper and lead, commonly found in cables and shielding, have high residual value and are thus highly desirable for recycling. Steel and stainless steel, while not inherently valuable, are present in many large components, such that decontamination for recycling can be cost-effective compared to disposal as radioactive waste. The decontamination techniques range from simple, inexpensive methods to complex, aggressive methods, each with advantages in various scenarios and limitations in others. Treatment often involves the sequential application of two or more decontamination techniques (e.g., chemical decontamination followed by abrasive blasting). Strategies for the characterization of materials for recycling include analyzing material in place before dismantlement, analyzing removed samples before or after dismantlement, and evaluating bulk material removed after dismantlement. If clearance and recycling are permitted, metals can be released to the conventional scrap recycling market, and concrete rubble can be used as backfill material onsite. In general, successful reuse/recycle projects require consideration of reuse/recycling objectives and implementation of associated planning activities early in the decommissioning process. The practicality of reuse/recycle depends on a number of high level (country and region-specific) and component level (material and case specific) factors. Since this information is useful to those responsible for planning or implementing the decommissioning of nuclear facilities, it is expected that it will be of great help especially to those in charge of decommissioning plan and managers in charge of decommissioning projects.
        34.
        2022.05 구독 인증기관·개인회원 무료
        Prior to dismantling a nuclear facility, full site characterization should be carried out to identify basic data for various stages of decommissioning, such as deregulation of sites and structures, selection of decontamination technology, decommissioning methods, and waste management and disposal. Radiological characterization is implemented through information collection, on-site measurement, sampling and analysis, and theoretical calculations and proven codes for radioactive material at the time of decommissioning of the nuclear facility. There are issues in that it takes a lot of time and money to collect and analyze samples for characterization of contaminated sites and radioactive structures. Therefore, in the entire process of decommissioning a nuclear facility, a technology that can quickly measure the radiological characteristics of various decommissioning objects and wastes on site is required. In this project, the utilization of gamma cameras that can be analyzed in the field for quick and accurate characteristic evaluation at the dismantling site was studied. A gamma camera, iPIX from Canberra (Now it became Mirion Technology), was tested in this study. It is a unique gamma imager, which have a CdTe sensor with TIMEPIX chip and a coded aperture collimator, quickly locates and identifies low to high level radioactive sources from a distance while estimating the dose rate at the measurement point in real time. It also can be combined with CZT sensor which called iPIX-NID (nuclide Identification) provides users with clear understanding of radionuclides presence with no need of any spectroscopic knowledge. iPIX with iPIX-NID convert the gamma camera into a hot-spot detector with radionuclide information. To verify the applicability of a gamma camera in Nuclear power plant, it was implemented to Kori unit-1 which was permanently shut down from 2017. Various Systems were observed at restricted area including reactor cooling system, boron recovery system, residual heat removal system, containment spray system, and etc. The locations of hot spots were clearly revealed by iPIX and these results can be used for selecting the locations of destructive samples and help to decide the conservative decision making. Condensate water systems in turbine building were also observed by a gamma camera and showed no nuclide. Based on this preliminary gamma camera applications, further investigation and tests will be carried out to Kori Unit-1.
        1 2 3 4 5