검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 39

        21.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The authors have demonstrated white oraganic light-emitting diodes (WOLED) using 1,4-bis[2-(4'-diphenylaminobiphenyl-4-yl)vinyl]benzene as fluorescent blue emitter and iridium(III) bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate as phosphorescent red emitter. The optimized WOLED using red host material as bis(2-methyl-8-quinolinato) -4-phenylphenolate exhibited proper color stability in comparison with the control device using 4,4'-N,N'-dicarbazole-biphenyl as red host. The white device showed a maximum luminance of 21100 cd/m2 at 14 V, luminous efficiency of 9.7 cd/A at 20 mA/cm2, and Commission Internationale de I'Eclairage (CIEx,y)coordinates of (0.32, 0.34) at 1000 cd/m2. The devices also exhibited the color shift with δCIEx,y coordinates of ± (0.01,0.01) from 100 to 20000 cd/m2.
        4,000원
        22.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 청색 인광 발광 물질인 bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium (III) (Flrpic)과 녹색 인광 발광 물질인 fac-tris(2-phenypyridine) irdium(III) (Ir(ppy)3)와 적색 인광 발광 물질인 his(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(acac))를 각각 적층하여 백색 유기 발광 다이오드를 제작하였고, 각각의 발광층 사이에 혼합된 스페이서인 4,4'-N,N'-dicarbazole-biphenyl (CBP):4,7-diphenyl-1,10-phenanthroline (BPhen)을 적층하여 그 때의 영향에 대하여 연구하였다. 최적화된 구조에서의 전력 효율은 0.014 mA/cm2에서의 19.7 lm/w를 나타내었으며, 0.127 mA/cm2에서의 11.5%의 외부 양자 효율을 나타내었고, 8 V에서 Commission Internationale do I'Eclairage (CIEx,y) coordinates (x=0.36, y=0.44)의 색좌표를 나타내었다.
        4,000원
        23.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have fabricated and evaluated newNew high high-efficiency green green-light light-emitting phosphorescent devices with an emission layer of [TCTA/TCTA1/3TAZ2/3/TAZ] : Ir(ppy)3 were fabricated and evaluated, and compared the electroluminescence characteristics of these devices were compared with the conventional phosphorescent devices with emission layers of (TCTA1/3TAZ2/3) : Ir(ppy)3 and (TCTA/TAZ) : Ir(ppy)3. The current density, luminance, and current efficiency of the a device with an emission layer of (80Å-TCTA/90˚Å-TCTA1/3TAZ2/3/130Å-TAZ) : 10%-Ir(ppy)3 were 95 mA/cm2, 25000 cd/m2, and 27 cd/A at an applied voltage of 10 V, respectively. The maximum current efficiency was 52 cd/A under the a luminance value of 400 cd/m2. The peak wavelength and FWHM (FWHM (full width at half maximum) in the electroluminescence spectral were 513 nm and 65 nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de I'Eclairage) chart. Under the a luminance of 15000 cd/m2, the current efficiency of the a device with an emission layer of (80Å-TCTA/90Å-TCTA1/3TAZ2/3/130Å-TAZ) : 10%-Ir(ppy)3 was 34 cd/A, which has beenshowed an improvement of improved 1.7 and 1.4 times compared to those of the devices with emission layers of (300Å-TCTA1/3TAZ2/3) : 10%-Ir(ppy)3 and (100Å-TCTA/200Å-TAZ) : 10%-Ir(ppy)3, respectively.
        4,000원
        25.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Among the efforts to increase the efficiency of organic light-emitting device (OLED), there is a way: doping phosphorescent materials. As a phosphorescent material, complexes of heavy transition metal, platinum, were synthesized. Cl- ion and phenyl group were used as ancillary ligands with 2-(2-pyridyl)benzimidazole (pbi) as a chromophore. The complexes were analysed by FAB-mass spectrometer and absorption and emission spectra were obtained. A phenyl group was able to shift the emission band of the complex even if it's not a chromorphore.
        3,000원
        26.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Development of white light emitting materials has been an interesting area for scientists and scientists have developed many organic, polymer and inorganic materials for white electroluminescent devices. Among them, single component small molecules gave best results in terms of efficiency, simplicity of device fabrication, and CIE values. Therefore, this review covers detailed discussion about syntheses of small compounds used in white organic light emitting devices until 2007.
        4,900원
        27.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new blue phosphorescent material for organic light emitting diodes (OLEDs), Iridium(III)bis[2-(4-fIuoro-3-benzonitrile)-pyridinato-N,C2'] picolinate (Firpic-CN), was synthesized and studied. We compared characteristics of Firpic-CN and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) which has been used for blue dopant materials frequently. The devices structure were indium tin oxide (ITO) (1000 a)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (500 a)/4,4'-N,N'-dicarbazole-biphyenyl (CBP) : FIrpic and FIrpic-CN (X wt%)/4,7-diphenyl-1,10-phenanthroline (BPhen) (300 a)/lithum quinolate (Liq) (20 a)/Al (1000 a). 15 wt% FIrpic-CN doped device exhibits a luminance of 1450 cd/m2 at 12.4 V, luminous efficiency of 1.31 cd/A at 3.58mA/cm2, and Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.15, 0.12) at 12 V which shows a very deep blue emission. We also measured lifetime of devices and was presented definite difference between devices of FIrpic and FIrpic-CN. Device with FIrpic-CN as a dopant presented lower longevity due to chemical effect of CN ligand.
        4,000원
        29.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we designed color of tunable and high efficient organic materials using the quantum dynamics and the semi-empirical calculation, and applied this results to the fabrication of organic light-emitting diodes. Also we optimized the molecular structure of phosphorescent materials and the energy transfer from a host to a dye which makes organic light-emitting diodes improve. Using quantum dynamics method, the molecular structures of ligand only and the whole metal chelate were optimized, and these energy levels were calculated. From this test results, we could understand the emission mechanism of phosphors with various ligands as well as design the proper ligands reducing the T-T annihilation and the carrier lifetime. We also could design ligands with various colors using this test method.
        4,000원
        31.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zinc complexes with bis[2-(o-hydroxyphenyl) naphtol [1,2] oxazolato ligands (ZnPBO-4) and its derivatives (ZnPBO-S) were synthesized, and luminescent properties of these materials were investigated. Both the fluorescent emission band and electroluminescent emission band were discussed based on their ligand structure differences. The emission band found that it strongly depends on the molecular structure of introduced ligand. It was tuned from 446 nm to 491 nm by changing the ligand structures. Spreading of the π-conjugation in 2-(o-hydroxyphenyl) group gives rise to a blue shift. The EL properties also showed good consistency with their differences of ligand structure. Bright-blue EL emission with a maximum luminance of 3,100 cd/m2 at 12V, current density, 575 mA/m2 was obtained from the organic light-emitting diodes (OLEDs) using ZnPBO-4 as emitting layer. It was also found that the newly synthesized materials were suitable to be used as emitting materials in organic EL device.
        4,000원
        32.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have seen the effects of buffer layer in organic light-emitting diodes using poly(N-vinylcarbazole)(PVK). Polymer PVK buffer layer was made using static spin-casting method. Two device structures were made; one is ITO/TPD/Alq3/Al as a reference and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured with a variation of spin-casting speeds. We have obtained an improvement of luminous efficiency by a factor of two and half when the PVK buffer layer is used.
        3,000원
        33.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The color stability and purity from OLED is of current interest. Aggregation of dyes alters the device color after fabrication of the devices. Exciplex and electroplex formations have been proposed to explain the aggregate color change. We investigate the possibility of exciplex formation and propose the new electroplex state that can cause the bathochromic shift of the electroluminescence spectrum from the devices with TPD/PBD layers. The photoluminescence maximum of the device was 420nm, and the electroluminescence maximum of the device to became 480nm. The bathochromic shift cannot be attained with photoluminescence study with highly concentrated TPD/PBD mixture. This clearly indicates that the 480nm spectrum of the devices is not resulted from the exciplex formation with TPD and PBD. We observed the overshoot in EL spectrum from the OLEDs. The most intense overshoot was observed at 460nm, which may be due to the aggregates that are formed after the electric field has been removed from the devices.
        4,000원
        34.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the phosphorescent organic light-emitting devices (OLEDs) have been extensively studied for their high internal quantum efficiency. In this study, we synthesised several phosphorescent metal complexes, and certified their composition using NMR. We also investigated the characteristics of the phosphorescent OLEDs with the green emitting phosphor, Ir(ppy)3. The devices with a structure of indium-tin-oxide(ITO)/N,N'-diphenyl-N,N'-(3-methylphenyI-1,1'-biphenyl-4,4'-diamine (TPD)/metal complex doped in host materials/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)/tris (8-hydroxyquinolinato) Aluminum(Alq3)/Li:Al/Al was fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of tris(2-phenylpyridine)iridium (Ir(ppy)3), we fabricated several devices and investigated their characteristics.
        4,000원
        35.
        2002.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have seen the effects of buffer layer in organic light-emitting diodes(OLEDs) using poly(N-vinylcarbazole)(PVK) depending on a concentration of PVK. Polymer PVK buffer layer was made using spin casting technique. Two device structures were fabricated; one is ITO/TPD/Alq3/Al as a reference, and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage-luminance characteristics and an external quantum efficiency were measured with a variation of spin-casting rpm speeds and PVK concentration. We have obtained an improvement of external quantum efficiency by a factor of four when the PVK concentration is 0.1wt% is used. The improvement of efficiency is expected due to a function of hole-blocking of PVK in OLEDs.
        4,000원
        36.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        White emission is important for applying organic EL devices to full-color flat panel display and backlight for liquid crystal display. In order to obtain white emission, the use of a light-emitting material which shows the white emission by itself is advantageous for these applications because of its high reliability and productivity. A chelate-metal complex such as zinc bis(2-(2-hydroxyphenyl) benzothiazolate) (Zn(BTZ)2 was known to emit white light with a broad electroluminescence. In this study, the electroluminescent characteristics of Be(BTZ)2 and Mg(BTZ)2, as well as Zn(BTS)2 were investigated using organic electroluminescent devices with the structure of ITO/TPD/ Be(BTZ)2, Mg(BTZ)2, or Zn(BTZ)2/Al. It was found that the device containing Be(BTZ)2 showed the highest power efficiency.
        4,000원
        37.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        This study investigated the effect of leaf form or phenotype and light intensity on the toluene, xylene, and ethylbenzene removal of three foliage plants. Green and variegated forms of Ardisia pusilla, Scindapsus aureus, and Hedera helix plants were grown under 10 and 20 μmol・m-2・s-1 light intensities for 8 months and were tested for their volatile organic compound (VOC) removal efficiency for 15 h. In general, variegated forms of the plant species have higher VOC removal after 15 h of VOC exposure than green plants, particularly when grown in 10 μmol・m-2・s-1. This is more evident in A. pusilla and S. aureus than in H. helix. The highest rate of toluene, m-, p-, and o-xylene removal per hour by plants grown under 10 μmol・m-2・s-1 was achieved by variegated A. pusilla, while for ethylbenzene, variegated A. pusilla and variegated H. helix had the highest removal rate per hour. In plants grown in 20 μmol・m-2・s-1 light intensity, variegated and green H. helix have the highest removal rate per hour of toluene and m-, p-, and o-xylene. For ethylbenzene, variegated A. pusilla and green and variegated H. helix had the highest removal rates per hour. The plant with the lowest removal rate per hour for all five VOCs was green S. aureus grown under both light intensities. The percentage VOC removal rate of variegated over green plants was 22% higher at a lower light intensity
        38.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of TiO2 nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, TiO2-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the TiO2-GO composites. The average efficiencies of the TiO2-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified TiO2 powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified TiO2 powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a TiO2-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.
        39.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        The major free sugars of buckwheat plants were fructose, glucose, and maltose but their contents and compositions were influenced by the different wavelength of light. Free sugar contents of Clfa 39 (Fagopyrum tataricum) were higher than those of Yangjul-maemil (Fagopyrum esculentum) regardless of the light sources. As treated with red and blue light, the free sugar contents in the leaves of buckwheat plants were slightly increased, but their contents in the stems and flowers were lower than those of natural light condition. Under the natural light condition, maltose was detected in every tissues of buckwheat plants, but as treated with blue and red light, it was not detected in the flowers of buckwheat plants. Citric, malic and acetic acid were detected as major organic acids in buckwheat plants. Red and blue lights decreased the total organic acid contents in buckwheat plants as compared with natural light condition. It was considered that blue light are less active than red light for the accumulation of organic acids. Tataric acid was detected only in the leaves of buckwheat plants, however, as treated with red and blue light, it was not detected in the leaves of Clfa 39. Flowers of Yangjul-maemil contained a considerable amount of rutin and quercitrin. Only small amount of quercitrin was detected in leaves, but it was not detected in stems. On the other hand, Clfa 39 leaves contained a considerable amount of rutin, quercetin and small amount of quercitrin, but quercitrin and quercetin were detected only in the stems of Clfa 39. Red and blue lights significantly decreased the contents of rutin, quercitrin, and quercetin in buckwheat plants as comparing with natural light condition. Rutin content in the flowers of Clfa 39 was increased under the red and blue light conditions.
        1 2