검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 184

        21.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Purpose: The purpose of this study was to identify the effects of learner-directed debriefing based on the clinical judgement model (LDCJM) on nursing students’ critical thinking disposition, selfdirected learning, problem-solving ability, and debriefing experience after simulation. Method: This study used a quasi-experimental design with 38 sophomore nursing students from one university. They were divided into an experimental group (n=20) and a control group (n=18). Collected data were analyzed by the Chi-square, the Mann-Whitney U-test, and the Wilcoxon signed-rank test using the WIN SPSS 22.0 program. Results: The experimental group that had participated in the LDCJM indicated significantly higher self-directed learning (U=23.50, p<.001), problem-solving ability (U=94.50 p=.011), and debriefing experience (U=87.00, p=.006) when compared to the control group. Conclusion: The results indicate that LDCJM is an effective learning strategy to improve self-directed learning, problem-solving ability, and debriefing experience. Further study is needed to identify the effects of various debriefing skills.
        4,600원
        22.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The feasibilities of cohesive elastoplastic contact model and discrete element method (DEM) for asphalt concrete mixture compaction process were evaluated. METHODS : The contact models that were used to simulate the dynamic behavior of construction materials were reviewed. The characteristics of cohesive elastoplastic models were discussed from the perspective of integration with existing contact models. Two asphalt mixtures that were fabricated with specific aggregate gradations and binder contents were compacted according to the Superpave gyratory compaction specification. The parameters for the model were determined via trial-and-error method. The heights of the specimens were plotted with respect to number of gyrations. The results of the laboratory tests were compared to those of numerical simulations. The displacement of particles in asphalt mixture specimen was also visualized to understand the effect of gyratory compaction on asphalt mixture specimen. RESULTS : The DEM model exhibited a significant friction coefficient dependency on compaction degree and slop. The DEM model with parameters determined through trial and error demonstrated reasonable simulation results in terms of specimen height at a gyration number. CONCLUSIONS: Even though a little discrepancy was observed between the results of the experimental test and numerical simulation, a combination of DEM with cohesive elastoplastic contact model seems to be applicable for the simulation of asphalt mixture compaction in laboratory. However, the model needs to be enhanced to be used for more realistic compaction processes, including heat transfer, phase change, and vibratory loading.
        4,000원
        23.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study proposes a cohesive shrinkage particle model that can be used to simulate a variety of dynamic behaviors and phase changes of construction materials, including road subsidence and debris flow, and phase change curing, via discrete element method (DEM). METHODS : From the perspective of DEM modeling, the water-content-dependent characteristics of soil particles and related modeling techniques are reviewed from literature. The static friction, cohesion, and particle size change are considered as the major parameters that should be reflected in DEM modeling for a more realistic simulation. The relationships of water content with cohesive force and particle radius, as determined from experimental test results in the relevant study, are utilized to develop the cohesive shrinkage model. For each water content value, the snapshot in simulation is compared to that in the experimental study. RESULTS: The numerical simulation shows very good agreement with the experimental test in terms of overall sample radius and thickness change due to drying. However, the local curling of soil sample in the DEM simulation does not perfectly match that in the experimental test. CONCLUSIONS : The cohesive shrinking particle model seems to be good enough for simulating the volumetric and phase changes of soil samples due to drying. However, it seems necessary to consider both bonding and cohesive contact models in DEM modeling because the only cohesive contact model exhibited limitations in the simulation of curling and crack development.
        4,000원
        28.
        2019.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The wakes behind a square cylinder were simulated using two-equation turbulence models, k-ε and RNG k-ε models. For comparisons between the model predictions and analytical solutions, we employed three skill assessments:, the correlation coefficient for the similarity of the wake shape, the error of maximum velocity difference (EMVD) of the accuracy of wake velocity, and the ratio of drag coefficient (RDC) for the flow patterns as in the authors’ previous study. On the basis of the calculated results, we discussed the feasibility of each model for wake simulation and suggested a suitable value for an eddy viscosity related constant in each turbulence model. The k-ε model underestimated the drag coefficient by over 40 %, and its performance was worse than that in the previous study with one-equation and mixing length models, resulting from the empirical constants in the ε-equation. In the RNG k-ε model experiments, when an eddy viscosity related constant was six times higher than the suggested value, the model results were yielded good predictions compared with the analytical solutions. Then, the values of EMVD and RDC were 3.8 % and 3.2 %, respectively. The results of the turbulence model simulations indicated that the RNG k-ε model results successfully represented wakes behind the square cylinder, and the mean error for all skill assessments was less than 4 %.
        4,000원
        32.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>38 o C) episodes in Korea. The extreme precipitation cases (>500 mm day−1 ) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.
        4,800원
        33.
        2018.05 구독 인증기관·개인회원 무료
        This paper will present a simulation-optimization model for the scheduling of multi-projects. The objectives of this research include the minimization of value added projects execution cost, project completion time, project tardiness, and underutilization of contracted or outsourced resources. It is the three-phase research. In first phase, a mathematical and simulation models will be developed for multi-objectives. In second phase simulation model will be coupled with genetic algorithm to form a simulation-optimization model. The efficiency of genetic algorithm (GA) will be improved simultaneously with fine-tuning and hybridizing with other algorithms. The third phase will involve the presentation of a numerical example for the real time application of proposed research. Solution of numerical obtained with fine-tuned and hybridized simulation integrated GA will be compared with already available methods of simulation-optimization. This research will be useful for the scheduling of projects to achieve the befits of high profit, effective resource utilization, and customer satisfaction with on time delivery of projects.
        34.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 강남 선정릉지역에서 전산유체역학모델(CFD)을 사용하여 도시지역의 흐름 및 열 환경 모의를 검증하는 것이고, CFD 모델의 모의결과와 선정릉 지역의 관측 자료와 비교하는 것이다. CFD 모델은 국립기상과학원과 서울대가 공동으로 연구 개발된 모델이다. CFD_NIMR_SNU 모델은 기상청 현업 모델인 국지예보모델(LDAPS)의 바람성분과 온도성분을 초기 및 경계조건으로 적용되었고 수목효과와 지표 온도를 고려하여 2015년 8월 4일에서 6일까지 강남 선정릉 지역을 대상으로 수치실험을 진행하였다. 선정릉지역에서 수목효과 적용 전후의 풍속을 비교하였을 때 평균 제곱근 오차(RMSE)는 각각 1.06, 0.62 m s−1로 나타났고 수목효과 적용으로 풍속 모의정확도가 향상되었다. 기온은 LDAPS 과소 모의하는 경향을 나타내고 CFD_NIMR_SNU 모델에 의해 향상된 것을 확인하였다. CFD_NIMR_SNU 모델을 이용하여 복잡한 도시지역의 흐름과 열 환경을 자세하고 정밀한 분석이 가능하며, 도시 환경 및 계획에 대한 정보를 제공 할 수 있을 것이다.
        4,500원
        35.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.
        4,000원
        36.
        2017.11 구독 인증기관·개인회원 무료
        역전기투석전지는 염수-기수의 농도차이를 원동력으로 이온교환막의 선택성에 의해 양이온과 음이온을 서로 반대방향으로 이동시켜 전력을 생산한다. 이상적인 이온교환막의 경우 35 g/L과 0.5 g/L 농도의 염수와 기수를 흘려 보냈을 때, 약 0.1 V의 전압 출력을 가진다. 본 연구에서는 역전기투석 스택전지의 출력특성에 영향을 주는 인자로서 막저항, 염수와 기수의 전기전도도, 막 이동수, 막 면적, 유로 두께 및 메쉬의 개방면적비, 스택수 등을 고려하여 수치모사를 수행하였다. 스택전지 내 유로에서 발생하는 누설전류 및 내부저항을 고려한 등 가회로모델을 수립하였고, 상용 이온교환막으로 제작된 스택전지 실험결과로부터 개방전압, 단락전류밀도, 최대전력밀도와 같은 중요 전지특성에 대하여 수치 모사의 정합성을 확인하였다.
        38.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is important to understand the variability of tropospheric ozone since it is both a major pollutant affecting human health and a greenhouse gas influencing global climate. We analyze the characteristics of East Asia tropospheric ozone simulated in a chemistry-climate model. We use a global chemical transport model, driven by the prescribed meteorological fields from an air-sea coupled climate model simulation. Compared with observed data, the ozone simulation shows differences in distribution and concentration levels; in the vicinity of the Korean Peninsula, a large error occurred in summer. Our analysis reveals that this bias is mainly due to the difference in atmospheric circulation, as the anomalous southerly winds lead to the decrease in tropospheric ozone in this region. In addition, observational data have shown that the western North Pacific subtropical high (WNPSH) reduces tropospheric ozone across the southern China/ Korean Peninsula/Japan region. In the model, the ozone changes associated with WNPSH are shifted westward relative to the observations. Our findings suggest that the variations in WNPSH should be considered in predicting tropospheric ozone concentrations.
        4,300원
        39.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        아소 화산은 일본 규슈 중앙부에 위치하며, 세계에서 가장 큰 칼데라 화산중의 하나이다. 나카다케 분화구는 아 소 칼데라의 중앙 화구군에서 유일한 활동적인 화산체이다. 2016년 10월 8일 아소 산에서 36년 만에 폭발적인 분화가 발생하였으며, 분연주가 11 km 상공까지 상승하였고 화산재는 최대 300 km 떨어진 지역에서도 확인되었다. 본 연구에 서는 미국 USGS에서 개발한 Ash3D모델을 이용하여 2016년 10월 8일의 분화에서 발생한 화산재의 확산과 침적에 대 한 수치모의를 실시하였다. 수치모의 결과 분화에 의해 발생한 화산재는 아소 칼데라 화산의 동쪽과 북동쪽으로 확산되 어 우리나라에는 피해를 주지 않는 것으로 나타났으며, 동북동 방향으로 최대 400 km 이상 먼 곳까지 침적되는 것으로 나타났다. 본 연구의 수치모의 결과는 관측 확인된 화산재 침적 결과와 대체로 일치하였다. 빠른 화산재 재해 예보를 위하여 Ash3D를 이용한 수치모의가 유용하게 쓰일 수 있을 것이다.
        4,600원
        40.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 강풍 위험 모델과 강풍 취약도 모델을 개발하여 옥외 광고물의 강풍 위험도를 정량적으로 평가하였다. 강풍 위험 모델과 강풍 취약도 모델 모두 확률론적 접근법인 몬테카를로 모사 모형을 적용하여 개발되었으며, 강풍 위험도 모델은 평가된 강풍 위험과 강풍 취약도의 수학적 계산을 통해서 평가되었다. 강풍 위험은 국내 내륙과 해안지역의 대도시인 서울과 부산 지역에 대하여 평가되었으며, 강풍 취약도 모델은 현장 조사와 문헌 조사를 통하여 파악된 10종의 벽면 이용형, 8종의 돌출형 옥외 광고물을 대상으로 개발되었다. 강풍 위험도에 영향을 미치는 요인을 파악하기 위하여 지표조도구분, 옥외 광고물의 형태, 설치 지역, 설치 높이 등에 따른 강풍 위험도를 정량적으로 평가하였다. 본 연구에서 제안한 강풍 위험도 평가 방법은 강풍으로 인한 옥외 광고물의 손실 추정 및 피해 저감 대책 수립을 위하여 활용될 수 있을 것으로 판단된다.
        4,000원
        1 2 3 4 5