검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 52

        22.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 기존에 개발된 생브낭의 원리를 이용한 응력개선방법에 부가적인 면외 워핑함수를 도입하여 후처리함으로써 기계 및 열응력을 개선할 수 있는 방법을 소개하였다. 열응력 예측이 중요한 문제로 다루어지고 있으며, 이에 따라 수많은 보이론들이 개발되어왔다. 일반적으로 고차이론들이 열응력 예측에 유용하다고 알려져 있지만, 자유도가 많아 계산과정이 복잡하다는 단점이 존재한다. 이러한 단점들을 보완하기 위해, 본 연구에서는 계산이 비교적 간단한 고전 보이론의 변위장에 면외 워핑함수를 부가적으로 도입하고 합응력 등가를 통해 후처리함으로써 보 구조물의 열응력을 정확하게 예측할 수 있는 방법을 제시하였다. 그리고 다양한 경계조건을 가지는 수치예제들을 통해 탄성해와 비교함으로써 그 정확도를 검증하고, 면외 워핑함수가 응력개선에 미치는 영향에 대해 분석하였다.
        4,000원
        23.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Apostichopus japonicus is an important species in some Asia countries including Korea, China and Japan. The purpose of the present study was to investigate the differential gene expression of heat shock protein90 (Hsp90) and ferritin as a biomarker for the thermal stress during water temperature rising in the sea cucumber, A. japonicus. The A. japonicus (1.4 g) was cultured in incubator of separate temperature (15°C, 20°C, 25°C and 30°C) for each 0, 3, 6, 12, 24, 48 hours. The mRNA expression levels of Hsp90 and ferritin were examined using RT-PCR assay. Results showed that, the expression of Hsp90 mRNA was not significantly changed at 15°C. The expression of Hsp90 mRNA was significantly increased at high temperature such as 20°C and 25°C. Furthermore, Hsp90 mRNA was early increased at 25°C than 20°C. The ferritin mRNA was similar expression pattern with Hsp90. But, Hsp90 mRNA was more sensitive than ferritin mRNA at high thermal stress. These results indicate that Hsp90 and ferritin mRNAs were involved in the temperature changes response and may be play an important role in mediating the thermal stress in A. japonicas.
        4,000원
        25.
        2015.10 구독 인증기관·개인회원 무료
        Five heat shock protein 70 (hsp70) isoforms (hsc70-3, hsc70-4, hsc70-5, hsc70cb, hsp70Ab) of Apis mellifera were identified from Honeybee genome database. Specific primers for each isoform were designed for the quantitative realtime RT-PCR analysis, then analyzed transcript levels of the abdomen of adult workers (3-4 weeks old) in respond to heat shock and imidacloprid ingestion. Heat shock at 45°C for 1 h induced all 5 genes but highest in hsc70cb, hsp70Ab. Ingestion of imidacloprid pesticide did not change any hsp70 isoforms at 33°C but those bees also highly responsive to heat shock at 45°C. In addition, expression level of each hsp70 isoform was various and heat shock response of each isoform was tissue-specific. For example, hsc70-3 was highest in midgut, hsc70-4 was in hypopharyngeal gland, but hsp70Ab was in fat bodies. However, heat shock response of all 5 isoforms was the highest in the fat body than brain, hypopharyngeal gland, midgut, flight muscle and integument. Our results provide information for the understanding of complicated protective mechanism of honey bee against thermal stress.
        26.
        2015.10 구독 인증기관·개인회원 무료
        The sweetpotato whitelfy Bemisia tabaci distribute worldwide and infests more than 500 species of plants. To determine nutritional stress of whiteflies at molecular level, we identified a full cDNA of glucose regulated protein 78 (grp78) which is known to be respond to nutritional restriction in vertebrate species. GRP78 of B. tabaci was highly conserved motifs of the HSP70 family and the C-terminal motif of KDEL characteristic of endoplasmic reticulum-specific HSPs. Real-time RT-PCR analysis showed that the grp78 level was not changed by thermal stress treatment from 4°C to 40°C for 1 h. However, the grp78 level was proportionally increased to the ingestion of a sucrose solution ranging in concentrations from 0% to 30% in a Parafilm feeding chamber. In addition, the grp78 levels were various by the ingestion of leaves of 10 different plants for 24 h; its level was higher with eggplant and pepper but lower with rice and apple. Our study suggests that the grp78 may have a role for cellular chaperones in relation to nutritional uptake of B. tabaci.
        27.
        2015.10 구독 인증기관·개인회원 무료
        Glucose-regulated protein 78 (GRP78) is a member of the heat shock protein 70 (HSP70) family that is specific to endoplasmic reticulum (ER). It is known as chaperones and signaling regulators that respond to ER stresses in vertebrates. However, its function in invertebrates, including insects, is uncertain. Here we determined a full cDNA sequence and the expression patterns of grp78 of Aphis gossypii, which is a major pest of numerous crop plants worldwide. Its cDNA had highly conserved motifs of the HSP70 family and the C-terminal motif of KDEL characteristic of ER-specific HSPs. It showed 98.5% identity with the GRP78 of the pea aphid Acyrthosiphon pisum. Real-time RT-PCR analysis showed that the grp78 level was higher in the fourth instar nymph than in the younger instar and adult stages. Its level was not affected by thermal stress of 10 to 40°C for 1 h. The grp78 level was proportional to the ingestion of a sucrose solution ranging in concentration from 0% to 30% in a Parafilm feeding chamber. In addition, the grp78 level varied among aphids feeding on leaves from 14 different host plants for 24 h; it was higher with eggplant and pepper but lower with pigweed and tobacco than any other plants. Our study suggests that the grp78 level is regulated by nutritional condition of A. gossypii.
        28.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermo-mechanical fatigue cracks on the turbine housing of turbochargers are often observed in currently developed gasoline engines for them to adopt lightness and higher performance levels. Maximum gas temperatures of gasoline engines usually exceed 950℃ under engine test conditions. In order to predict thermo-mechanical failures by simulation method, it is essential to consider temperature-dependent inelastic materials and inhomogeneous temperature distributions undergoing thermal cyclic loads. This paper presented the analytical methods to calculate thermal stresses and plastic strain ranges for the prediction of fatigue failures on the basis of motoring test mode, which is commonly used for accelerated engine endurance test. The analysis results showed that the localized critical regions with large plastic strains coincided well with crack locations from a thermal shock test.
        4,000원
        29.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, an efficient yet accurate method for the thermal stress analysis using a first order shear deformation theory(FSDT) is presented. The main objective herein is to systematically modify transverse shear strain energy through the mixed variational theorem(MVT). In the mixed formulation, independent transverse shear stresses are taken from the efficient higher-order zigzag plate theory, and the in-plane displacements are assumed to be those of the FSDT. Moreover, a smooth parabolic distribution through the thickness is assumed in the transverse normal displacement field in order to consider a transverse normal deformation. The resulting strain energy expression is referred to as an enhanced first order shear deformation theory, which is obtained via the mixed variational theorem with transverse normal deformation effect(EFSDTM_TN). The EFSDTM_TN has the same computational advantage as the FSDT_TN(FSDT with transverse normal deformation effect) does, which allows us to improve the through-the-thickness distributions of displacements and stresses via the recovery procedure. The thermal stresses obtained by the present theory are compared with those of the FSDT_TN and three-dimensional elasticity.
        4,000원
        30.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With increasing use of SUH35/SUH3 dissimilar materials for automotive engine valves, it is required that stress singularities under residual stress on an interface for friction welded dissimilar materials analyzed to establish strength evaluation. The stress singularity index() and stress singularity factor( ) were calculated by using the results of stress analysis considering residual stress and loads. The stress singularities on variations for temperatures and loads acting from outside were analyzed and discussed. This paper suggested that the strength evaluation by using the stress singularity factors as fracture parameters, considering the stress singularity on an interface edge of friction welded dissimilar materials will be useful.
        4,000원
        31.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Epoxy resin based encapsulants are widely used in semiconductor packaging applications. Epoxy resin based encapsulants are often subject to crack or delamination during the reliability test due to the thermal stress caused by high modulus nature of epoxy resins. Epoxy functional siloxanes are often added into epoxy resin to reduce the modulus so that the thermal stress can be reduced. Epoxy functional siloxanes, additives for reduced modulus, were synthesized and added into the curable epoxy resins. The modulus and the coefficient of thermal expansion (CTE) were also measured to investigate the thermal stress and to see whether the epoxy functional siloxane adversely affects the CTE or not. As a result, around 26% to 72% of thermal stress reduction was observed with no adverse effect on CTE.
        4,000원
        32.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In-Pool By-Pass Pipe is a structure which connects the 2 In-Pool Pipes instead of In-Pile Test Section(IPS). It is designed to accommodate the 17.5 MPa and 80 ℃ under the consideration of the FTL pre-operation conditions but the need for high temperature, over 200 ℃, during FTL pre-operation make the additional assessment to be performed. For this study 2 models are used. One is an In-Pool By-Pass Pipe model which affected by HANARO water's elevation, another is an In-Pool By-Pass Pipe Nozzle which has 2 boundary conditions; water and air. After the heat transfer analysis linear stress analysis was performed to achieve Tresca stress. In the region of high stress model's detailed behavior is observed by ASME SectionⅢ NB code. Consequentially it concluded that the model of In-Pool By-Pass Pipe Structure is in reasonable agreement with those code.
        4,000원
        33.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        반도체 직접회로 패키지에서, 실리콘 칩의 탑 표면은 양면 리드 프레임 영역에서 바로 붙게 된다. 여기서, 양면이란 베이스 층에 상위 접착층과 하위 접착층으로 되어 있음을 말한다. IC 패키지 구조는 탈 라미네이트 화와 같이 열-기계적 파손 모드로 나타나게 된다고 알려져 왔다. 이 파손 모드의 원인은 실리콘 칩 접착면의 잔류응력 과 냉간 숙성 공정 내에 리드 프레임으로 인해 일어난다. 숙성 공정 내 유도된 열응력은 실리콘 칩과 리드 프레임위에 냉간 잔류 응력에 영향을 가진다. 본 연구에서는 칩 표면 손상의 최소화를 위해서, 실리콘 칩 위에 접착 위상 최적화 방법들이 유한 요소 해석(Finite Element Analysis)을 통해 연구되었다
        4,000원
        35.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 가압경수로(PWR) 고준위폐기물을 깊은 지하 500 m에 처분 시 사용되는 처분용기의 기본 구조설계에 필요한 처분용기 구조물에 대한 열응력 해석을 수행하였다. 일반적으로 고준위폐기물 처분용기는 지하 수백 미터에 위치하는 화강암 등의 암반 내에 설치하게 되는데, 이 때 처분용기는 내부 바스켓에 채워진 사용 후 핵연료다발의 높은 온도에 따른 열발생에 의하여 내부 주철삽입물 및 외곽쉘에 발생하는 열응력에 견디어야 한다. 따라서 본 논문에서는 처분용기 내부의 핵연료 다발의 열발생을 고려한 열응력 해석을 수행하였다 해석 방법은 유한요소법을 사용하였다. 직접 유한요소해석코드를 작성하는 대신에 구조물의 복잡성 및 유한요소개수의 많음을 고려하여, 상용 유한요소해석 코드인 NISA프로그램을 이용하여 열응력 해석을 수행하였다 해석 결과 처분용기에 가해지는 심지층 지하수압 및 벤토 나이트 버퍼의 팽윤압에 추가하여, 고온의 내부 핵연료다발에 의한 열하중이 작용하더라도 처분용기의 내부 주철삽입물에 발생하는 응력은 주철의 항복응력 보다 여전히 작아 처분용기는 구조적으로 안전함이 확인되었다
        4,000원
        36.
        2002.06 구독 인증기관·개인회원 무료
        Plastic deformation was observed by TEM around the intragranular SiC particles in the matrix for nanocomposite system. The dislocations are generated at selected planes and there is a tendency for the dislocations to form a subgrain boundary structure with low-angel grain boundaries and networks. In this study, dislocation generated in the matrix during cooling down from sintering temperatures by the highly localized thermal stresses within and/or around SiC particles caused from the thermal expansion mismatch between matrix and SiC particle was observed. In monolithic and microcomposite system. These phenomena is closely related to the plastic relaxation of the elastic stress and strain energy associated with both thermal misfitting inclusions and creep behaviors. The plastic relaxation behavior was explained by combination of yield stress and internal stress.
        1 2 3