검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 644

        381.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/Carbon Composites due to their far superior thermo-mechanical properties are used in a number of demanding applications. However, the material still is used only in specific high tech applications with few exceptions in general industrial applications. The material is extremely expensive and the major challenge is to reduce its cost. Various innovative processing routes are outlined to reduce the cost of processing.
        4,000원
        383.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effects of atmospheric oxygen plasma treatment of carbon fibers on mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites was studied. The surface properties of the carbon fibers were determined by acid/base values, Fourier-transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. Also, the crack resistance properties of the composites were investigated in critical stress intensity factor (KIC), and critical strain energy release rate mode II (GIIC) measurements. As experimental results, FT-IR of the carbon fibers showed that the carboxyl/ester groups (C=O) at 1632 cm-1 and hydroxyl group (O-H) at 3450 cm-1 were observed for the plasma treated carbon fibers, and the treated carbon fibers had the higher O-H peak intensity than that of the untreated ones. The XPS results also indicated that the O1S/C1S ratio of the carbon fiber surfaces treated by the oxygen plasma led to development of oxygen-containing functional groups. The mechanical interfacial properties of the composites, including KIC (critical stress intensity factor) and GIIC (critical strain energy release rate mode II), were also improved for the oxygen plasma-treated carbon fibersreinforced composites. These results could be explained that the oxygen plasma treatment played an important role to increase interfacial adhesions between carbon fibers and epoxy matrix resins in our composite system.
        4,000원
        384.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anti-oxidation coatings are the key technique for carbon/carbon (C/C) composites used as the thermal structural materials. The microstructure and oxidation behavior of several kinds of high-performance ceramic coatings for C/C composites prepared in Northwestern Polytechnical University were introduced in this paper. It showed that the ceramic coatings such as SiC, Si-MoSi2, SiC-MoSi2, Al2O3-mullite-SiC and SiC/yttrium silicate/glass coatings possessed excellent oxidation resistance at high temperatures, and some of these coatings were characterized with excellent thermal shock resistance. The SiC-MoSi2 coating system has the best oxidation protective property, which can effectively protect C/C composites from oxidation up to 1973 K. In addition, the protection and failure reasons of some coatings at high temperature were also provided.
        4,000원
        387.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum matrix composites strengthened by the quasi-crystalline (QC) phase were developed in the present study. The icosahedral phase was produced by gravity casting and subsequent heat treatment. The mechanical milling process was utilized in order to produce the Al/QC composite powders. The microstructures of the composite powders were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The composite powders were subsequently canned, degassed and extruded in order to produce the bulk composite extrusions with various volume fractions of QC. The microstructure and mechanical properties of the extrusions were examined by OM, SEM, Vickers hardness tests and compression tests. It was found that the microstructures of the Al/QC composites were uniform and the mechanical properties could be significantly improved by the addition of the QC phase.
        4,000원
        389.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study of mechanical properties and fracture behaviour of carbon/carbon composites is significant to its application and development. These are dependent on microstructure and properties of reinforcing fibers and matrix, fiber/matrix interface and porosity/cracks present in the composites. In the present studies high-density carbon/carbon composites have been prepared using PAN and various pitch based carbon fibers as reinforcements and pitch as matrix with repeated densification cycles using high-pressure impregnation and carbonization technique. Scanning electron microscopy has been used to study the fracture behaviour of the highly dense composites and correlated with structure of the composites. The geometry of reinforcement and presence of unfilled voids/cracks was found to influence the path of crack propagation and thereby the strength of composites. The type of stresses (tensile or compressive) accumulated also plays an important role in fracture of composites.
        4,000원
        390.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60℃ to -50℃ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.
        4,000원
        392.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-ceramic composites refer to a special class of carbon based materials which cover the main drawbacks of carbon, particularly its proneness to air oxidation, while essentially retaining its outstanding properties. In the present paper, the authors report the results of a systematic study made towards the development of C-SiC-B4C composites, which involves the effects of compositional parameters, namely, carbon-to-ceramic and ceramic-to-ceramic ratios, on the oxidation behaviour as well as other characteristics of these composites. The C-SiC-B4C composites, heat-treated to 1400℃, have shown that their oxidation behaviour at temperatures of 800~1200℃ depends jointly on the total ceramic content and the SiC : B4C ratio. Good compositions of C-SiC-B4C composites exhibiting zero weight loss in air at temperatures of 800~1200℃ for periods of 4~9 h, have been identified. Composites with these compositions undergo a weight gain or a maximum weight loss of less than 3% during the establishment of a protective layer at the surface of carbon in a period of 1~6 h. Significant improvement in the strength of C-SiC-B4C composites has been observed which increases with an increase in the total ceramic content and also with an increase in the SiC : B4C ratio.
        4,000원
        393.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The polymer-ceramic hybrid, known as 'ceramer', was synthesized by a sol-gel process by incorporating different amount of alkoxide as source of silicon in resorcinol-formaldehyde in presence of basic catalyst to get different percentage of silicon in ultimate carbonized composites. FTIR of the ceramer confirms that it is a network of Si-O-Si, Si-O-CH2 and Si-OH type groups linked with benzene ring. Different amount of silicon in the ceramer exhibits varying temperature of thermal stability and lower coefficient of thermal expansion as compared to pure resorcinol-formaldehyde resin. The lower value of CTE in ceramer is due to existence of silica and resorcinol -formaldehyde in co-continuous phase. Unidirectional composites prepared with ceramer matrix and high-strength carbon fibers show lower value of flexural strength at polymer stage as compared to those prepared with resorcinol-formaldehyde resin. However, after heat treatment to 1450℃, the ceramer matrix composites show large improvement in the mechanical properties, i.e. with 7% silicon in the ceramer, the flexural strength is enhanced by 100% and flexural modulus value by 40% as compared to that of pure resorcinol-formaldehyde resin matrix composites.
        4,000원
        394.
        2004.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        탄소 섬유강화 에폭시기지 복합재의 경면 가공한 스테인리스강 상대재와 마찰과 마모에 바탕을 둔 연구에서는 다음과 같은 결론을 얻었다. (1) 복합재의 비마모율은 하중이 증가하면 N방향와 P방향에서는 증가하는 경향을 보이며,AP방향에서는 감소한다. 이것은 마모 메카니즘의 영향으로 속도가 증가하면 마모 이착막의 생성이 빨라져 이착막 속의 탄소섬유가 윤활제의 역할을 하기 때문이다. (2) 복합재의 마찰계수는 하중이 증가하면 N방향과 AP방향에서는 하중 39.2N까지 증가하다가 그 이상의 하중에서는 감소되며 AP방향에서는 하중이 증가함에 따라 서서히 증가하며, 또한 그 값은 N방향에서 가장 크고, AP방향이 가장 적다. (3) 일방향 탄소섬유 강화 복합재의 마모 거동에 미치는 하중의 효과는 다르며 마찰초반에 발생한 섬유에 의한 쟁기질과 섬유 굽힘 및 미소크랙에 의한 섬유 균열과 파괴에 따른 마모 메카니즘의 형태에 의한 것이다.
        4,000원
        395.
        2004.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        탄소 섬유강화 에폭시기지 복합재의 경면 가공한 스테인레스 강 상대재와 마찰과 마모에 바탕을 둔 연구에서 다음과 같은 결론을 얻었다. (1) 일방향 탄소섬유 강화 복합재의 마모 거동에 미치는 미끄럼 방향의 효과는 다르며 작용하는 마모 메커니즘의 형태에 의존한다. (2) 상온에서 경면 가공한 스테인리스 스틸에 대하여 미끄럼이 일어나면 AP 방향에서 높은 마모 저항과 낮은 마찰계수가 관찰되었다. (3) 복합재의 비마모율은 미끄럼 속도가 증가하면 N방향과 P방향에서는 감소하는 경향을 보이며, AP 방향에서는 증가하다가 감소한다. 이것은 마모 메카니즘의 영향으로 속도가 증가하면 마모 이착막의 생성이 빨라져 이착막 속의 탄소섬유가 윤활제의 역할을 하기 때문이다. (4) 복합재의 마찰계수는 미끄럼 속도가 증가하면 3방향 모두 증가하다가 일정한 값에 수렴하면 N방향이 가장 크며, P방향과 AP방향 순이다. 이는 N방향에서 마찰초반에 발생한 섬유의 쟁기질에 의한 상대재 표면의 손상과 돌기변형에 따른 것이며, AP방향의 마찰계수가 가장 낮다.
        4,000원
        396.
        2004.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        하이브리드 복합재료(Hybrid composites) 의 층간 파괴 인성치에 영향을 주는 인자 중 적층순서, 하중점변위율, 초기크랙길이를 변화 시켰을 때의 실험 결과는 다음과 같다. (1) CF/CF, CF/GF. GF/GF로 적층하였을 경우 층간파괴인성치값은 서로 같은 계면을 성형한 것보다 서로 다른 계면을 적층한 CF/GF의 경우가 강도면에서 가장 높게 나타나는 것을 알 수 있었다. (2) 하중점변위율은 미세한 변동은 있었으나, 하중점변위율의 영향은 거의 받기 않는 것을 알 수 있었다. (3) 초기크랙을 변화시켰을 때, 초기크랙길이의 영향은 일정하지 않았다. CF/CF인 경우는 초기크랙이 짧은 경우, CF/GF. GF/GF인 경우는 초기크랙이 긴 경우에 높은 값을 나타났다. 이것은 GF 섬유가 직조형태의 프리프레그로 되어 있어 크랙의 진전에 따라 섬유부스러기 등의 생성에 따른 영향이라고 생각된다. (4) 적층순서에 따라 파면의 섬유 분포 형태가 달랐으며 CF/GF인 경우가 섬유의 파손형태가 가장 복잡하게 나타났으며, 이것이 높은 층간파괴인성치를 나타내는 원인이라고 판단된다.
        4,000원
        397.
        2004.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new concept of tungsten heavy alloy composite was suggested and manufactured in this study for the kinetic energy penetrator. The composite heavy alloy was composed of two parts, the center was molybdenum added heavy alloy compositions which were designed to promote the self-sharpening effect and outside was conventional heavy alloy in order to sustain the severe stress condition in the muzzle during the firing. The center part showed an intergranular and brittle mode at tungsten/tungsten interfaces by which self-sharpening effect could be activated. On the other hand, that of outside showed conventional ductile fracture mode under high strain rate condition. From the sub-scale penetration test, the depth of penetration in heavy alloy composites showed greater values than those of conventional tungsten heavy alloys. It is suggested that the heavy alloy composite could be considered as one of the future penetrator materials.
        4,000원
        398.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chop molding composites and 2D carbon/carbon composites were manufactured by hot press molding method. Phenol resin of novolac type was used for matrix precursor and PAN-based carbon, PAN-based graphite and pitch-based carbon fiber were used for reinforcement and boron oxide was used for oxidation retardant. All of the composites were treated by 2000℃ and 2400℃ graphitization process, respectively. After graphitization process, amount of a boron residue in carbon/carbon composites is much according to irregularity of used raw materials. Under the presence of boron in carbon/carbon composites, catalytic effect of boron was a little at 2000℃ graphitization temperature. However, it was quite at 2400℃ graphitization.
        4,000원
        399.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from 90˚ oriented plies to 0˚ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.
        4,000원
        400.
        2004.08 구독 인증기관 무료, 개인회원 유료
        Repaired RC flexural members with ductile cementitious composite are numerically simulated to understand the improved performance in post-peak behavior. Also, stress distributions along steel reinforcements and crack width on the tensile surface are monitored to understand the effect of using ductile cementitious composite as a repair material. The results provide durability characteristics of repaired structures under flexural loading condition.
        4,000원