검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 426

        401.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        피복 콘크리트의 균열 발생에 기인한 매크로셀 부식 환경하에서의 Cr강방식철근의 방식성을 평가하기 위하여 10종류의 Cr강방식철근을 콘크리트에 매입 후 피복 콘크리트에 모사 균열을 발생시킨 공시체를 제작하였다. 그 후 염수 분무 촉진 양생 105사이클까지의 매크로셀 부식전류밀도의 경시변화와 아노드ㆍ캐소드 철근의 자연전위, 부식면적률, 부식감량률을 측정함으로써 Cr강방식철근의 방식성에 대하여 검토하였다. 그 결과, 염화물 이온 농도차 3kg/m3 이하의 매크로셀 부식 환경에 대하여 Cr함유율 9% 이상의 Cr강재에서 방식성이 확인되었으며 특히, Cr함유율 11% 이상의 Cr강재에서 뛰어난 방식성이 입증되었다.
        402.
        2006.05 KCI 등재 서비스 종료(열람 제한)
        중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성을 평가하기 위하여 Cr함유율이 다른 10종류의 철근을 피복 두께 20mm 위치에 매입한 염화물 이온 함유량 0.3, 0.6, 1.2, 2.4kg/m3의 콘크리트 공시체를 제작하였다. 그 후 촉진 중성화 시험 및 고저온 건습 반복의 부식 촉진 시험 기간 중의 Cr강방식철근의 자연전위, 부식면적률, 부식감량률의 경시변화를 측정함으로써 각 부식 환경에 대한 Cr강방식철근의 방식성에 대하여 검토하였다. 그 결과, 중성화와 염해의 복합 열화 환경의 경우, 염화물 이온 함유량 1.2kg/m3과 2.4kg/m3에 대하여 각각 Cr함유율 7% 이상과 9% 이상의 Cr강방식철근에서 방식성이 확인되었다.
        403.
        2005.07 KCI 등재 서비스 종료(열람 제한)
        A laboratory experiment was performed to investigate phosphorus and nitrogen removal from synthetic wastewater by intermittently aerated activated sludge process packed with aluminum and silver plate. Three continuous experimental processes, i. e. an intermittently aerated activated sludge process(Run A), an intermittently aerated activated sludge process with an aluminum and silver plate packed into the reactor(Run B), and a reactor post stage(Run C) were compared. In the batch experiments, the phosphorus removal time in the reactor packed with aluminum and silver plate simultaneously was faster than that of the reactor packed with only an aluminum plate. More phosphorus was removed with an increase of NaCl concentration. The pitting corrosion of aluminum does not affect the performance of the biological treatment. The total nitrogen removal efficiency in Run B was 57% and 43.6% at the HRT of 12 and 6 hours respectively. The effluent PO4-P concentration as low as 1.0 mg/L could be obtainable through the continuous experiment in Run B at HRT of 6 hours.
        407.
        2005.01 KCI 등재 서비스 종료(열람 제한)
        Because of the toxicity of hexavelant chromium ion, treatments of metallic surface with chromate compounds to retard corrosion are undesirable for safety control in industrial uses and protection of environment. In this study, we investigated several compounds such as inorganic, organic, and polymer materials in order to substitute the chromate conversion treatment on steel sheet. The corrosion property was investigated in a salt spray tester with 3.5 wt.% NaCl at 35℃. The results showed that the zirconium/silane/polymer triple coatings on the galvanized steel exhibited a significant retardation of corrosion. Although the multicoating system needs a complexed processing, we can confirm a possibility of development of a chromate-free chemical conversion treatment for galvanized steel sheet.
        408.
        2003.07 KCI 등재 서비스 종료(열람 제한)
        This work aims the search of environmentally friendly pre-treatment technologies to develop chromate replacements for metal finishing industries due to its toxicological properties. Since the corrosion resistance of steel was strongly related to water permeation, galvanized steel sheets were treated with various hydrophobic silane compounds and water-suspended polymer solution. Also, plasma gas discharge was applied to modify the surface of a polymer coated-steel sheet to be hydrophobic. The surface hydrophobicity of materials was introduced by CF3H plasma exposure. The corrosion property before and after the plasma treatment was investigated in a slat spray tester with 3.5 wt.% NaCl at 35 ℃. The results showed that both silane/polymer double coatings and plasma treatment of the galvanized steel exhibited significant retardation of corrosion.
        415.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the effects of Ca(OH)2 and CO2 additions on the corrosion of metal coupons (ductile iron, galvanized steel, copper and stainless steel). Corrosion rate and released metal ion concentration of ductile iron and galvanized steel was decreased by adjusting alkalinity, calcium hardness and pH with Ca(OH)2 & CO2 additions named CCPP (Calcium Carbonate Precipitation Potential) index control process. But the effects of Ca(OH)2 & CO2 additions on copper and stainless steel were less than those on ductile iron and galvanized steel. When ductile iron coupon was exposed to water treated with Ca(OH)2 & CO2 additions, the main components of corrosion product formed on its surface were CaCO3 and Fe2O3 or Fe3O4, which often reduce the corrosion rate by prohibiting oxygen transport to the metal surface.
        21 22