검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 60

        41.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        This is a study on the volatile organic compounds(VOCs) concentrator with zeolite adsorptive honey rotor and catalytic combustion system for abating VOCs emitted from printing industry. VOCs emitted from the printing industry is mainly caused by organic solvent of printing ink. The content of organic solvents in printing ink varies from 40% to 75% and its content in the gravure ink is higher than that in any other ink. The average concentrations of each VOCs are 139 ppm for toluene, 152.1 ppm for MEK, 256.9 ppm for methanol and 42.9 ppm for isopropyl alcohol. We used zeolite honeycomb for absorbent of VOCs concentrator and palladium for catalyst combustion system. This system abated over 96% of emitted total VOCs, 98% of toluene, 100% of MEK, 92% of methanol and 100% of isopropyl alcohol. It is concluded that the low-leveled high-volume VOCs emitted from printing process were removed almost by concentrator with zeolite adsorptive honey rotor and catalytic combustion system.
        43.
        2008.06 KCI 등재 서비스 종료(열람 제한)
        Numerical study is conducted to predict effects of radiative heat loss and fuel composition in synthetic gas diffusion flame diluted with CO₂. The existing reaction models in synthetic gas flames diluted with CO₂ are evaluated. Numerical simulations with and without gas radiation, based on an optical thin model, are also performed to concrete impacts on effects of radiative heat loss in flame characteristics. Importantly contributing reaction steps to heat release rate are compared for synthetic gas flames with and without CO₂ dilution. It is also addressed that the composition of synthetic gas mixtures and their radiative heat losses through the addition of CO₂ modify the reaction pathways of oxidation diluted with CO₂.
        50.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, CO2, CO) are measured with equivalence ratios(ø), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and CO2 emission concentration are similar to that of LPG fuel.
        1 2 3