Bumblebee, Bombus ardens ardens (Apidae: Hymenopera), is an important resource for pollination that is most widely distributed in Korea. This study utilized microsatellite markers for investigation of genetic diversity and geographic relevance of the B. a. ardens populations in Korea. Through Next Generation Sequencing analysis, we identified 10 microsatellite markers and genotyped for 107 individuals of B. ardens collected from 10 populations. At each locus the number of alleles ranged from 10 to 23; the observed and expected heterozygosities ranged from 0.8909 to 1.0000 and 0.6641 to 0.8422, respectively; and inbreeding coefficient(FIS) ranged from –0.5053 to –0.0891. Significant deviation from the Hardy–Weinberg equilibrium was not observed at any locus. Population structure analysis indicated that there are three genetic groups in Korea with each Jeongseon and Ulleung-do composed of different gene pool from the remaining other populations. Similarly, Principal coordinates analysis also showed the same pattern. FST and RST analyses showed that each Jeongseon and Ulleung-do population had a significant genetic distance from other populations. Considering these results, genetic isolation of Ulleung-do may be explained by “Oceanic island” status and Jeongseon, which showed the positive FIS (0.069) and genetic isolation may be caused by its location on the east side of Baekdudaegan and by on-going inbreeding with a small population size.
This study was conducted to find out the environmental, service sire and genetic effects for reproductive trait in certain purebred of pigs on Landrace and Yorkshire, and to suggest selection indicator which is to improve genetic capability on reproductive traits. There are five traits used on this analysis which are total number of born (NBT), number of born alive (NBA), piglets weight within litter (LW), average of birth weight on piglets within litter (ABW) and variation of birth weight on piglets within litter (VBW). With these data, the mixed model was established using 10,342 records collected from 2,527 sows of Landrace and 13,817 records collected from sows of 3,056 Yorkshire breeds and the variation of random effects and the genetic parameter were estimated by the REML method including service sire effects, permanent environmental effects and sow genetic effects. Due to characteristics of closed nucleus herd for using data on this study, given that it has been isolated breeding for about 19 years that progressed over 16 generations, genetic analysis was performed on all of these data and partial data of the current genetic group in which animals were born after 2011. The effects of service sire were estimated to be less than about 8% of total variation in all traits considered in the analysis. Permanent environmental effects were estimated about 2~14% of total variation in all traits considered. The heritability, which is the ratio of genetic variance among the total variance, was estimated to be 20~35% for LW and ABW in Landrace and Yorkshire, while it was about 10~14% for NBT. The genetic correlations between NBT and LW were 62~74% and between NBT and ABW were –28~-7%. Therefore, indirect selection for improving litter size could be possible with considering LW. Whereas, the genetic effect of the service sire effects for litter traits would be trivial.
Genotyping-by-sequencing (GBS) is a cost-efficient method which can be useful for SNP marker discovery in a population of interest. GBS is genome reduction sequencing method using restriction enzyme. The quality of DNA is a key factor which could have an influence in downstream analysis. However, there have not been many studies which investigated the impact of DNA degradation and the quality of the data on marker discovery. In this study, GBS data of 6 Hanwoo samples (H1~6) showing differing level of DNA degradation were compared. Re-sequencing pipeline was followed to investigate the impact of DNA degradation on marker discovery. As a result, we found that the quantity and quality of SNPs were not affected in the sample H5 and H6 with moderately degraded DNA. On the other hand, marker discovery was greatly affected in samples with severe DNA degradation (H3 and H4). The findings in this study support that GBS is a robust genotyping method towards moderate DNA degradation.
북방종개(Iksookimia pacifica)의 유전적 다양성과 구조적 특징을 밝히기 위해 동해 독립하천들에 서식하는 10개의 집단들을 대상으로 핵유전자와 미토콘드리아 유전자에 기반한 집단유전학적 분석을 실시하였다. 일부 예외적인 경우를 제외하고, 미토콘드리아와 핵유전자 모두 통계적으로 유의미한 집단 간 유전적 분화가 관찰되었다. 핵유전자들의 DNA 서열자료에서 추출한 유전자형 자료를 Bayesian 방법으로 분석한 결과 북방종개는 천진천과 양양남대천을 기준으로 북쪽과 남쪽의 두 개의 그룹으로 나뉘는 구조를 보였다. 현재 동해 하천들이 지리적으로 단절되어 온 독립 수계라는 것을 감안했을 때, 남북으로 구별되는 집단유전적 구조는 북방종개가 한반도에 정착했던 초기 조상 집단이 남북으로 갈라지는 지리적인 분리 사건과 관련되었을 것으로 해석되며, 이러한 초기 조상집단의 지리적 분리 이후, 두 조상 그룹들은 남북의 지리적인 범위 내에서 하천 별 고립에 따른 추가적인 분화 과정을 거쳤을 것으로 추정된다. 주목할 점으론, 자산천 집단의 많은 개체들이 지리적 거리가 먼 양양남대천 및 강릉남대천 집단과 하나의 유전적 cluster를 형성하고 있는 것이다. 이와 함께 미토콘드리아 유전자의 경우 몇몇 이웃하는 집단들 사이에 현저히 낮은 유전적 분화도 그리고 일부 집단들에서 매우 낮은 유전적 다양성이 관찰되었다. 본 집단유전학적 결과는 향후 북방종개의 보존 및 관리를 위한 기초자료로 제시될 것이다.
The Japanese oak silkmoth, Antheraea yamamai Guérin-Méneville 1861 (Lepidoptera: Saturniidae), is one of the important natural resources possessing industrial value for silk fiber production. In this study, ten microsatellite markers and two mitochondrial DNA (mtDNA) gene sequences (COI and ND4) were used to investigate the genetic variation and geographic structure of A. yamamai populations in South Korea. Two mtDNA gene sequences revealed very low total genetic variation and resultant low geographic variation, validating to use further variable molecular markers. Population-based FIS, FST, RST, and global Mantel test consistently support that A. yamamai populations are overall well interconnected with a relatively high gene flow. Nevertheless, STRUCTURE analysis using microsatellite data and mtDNA sequences coincidently indicate the presence of two genetic pools in many populations.
지구 기후변화에 따라 아열대성 해충이 온대지역으로 이주를 통해 서식지를 넓히고 있다. 아열대성 해충인 콩명나방(Maruca vitrata)이 국 내에서 팥을 비롯한 콩과작물에 경제적 피해를 일으키고 있다. 비교적 유전적 변이가 큰 곤충으로 알려진 콩명나방에 대해서 국내 집단의 기원에 대해서 의문을 갖게 되었다. 국내 콩명나방 집단의 유전적 특성을 이해하기 위해 cytochrome oxidase subunit 1 (cox 1) 유전자의 염기서열을 판독 하였고, 이를 다른 지역 집단들과 분자계통학적으로 분석하였다. 전 세계에 분포하고 있는 콩명나방은 크게 3 그룹(아시아-아프리카, 아메리카, 오세아니아)으로 분류되었다. 이 가운데 국내 콩명나방은 아시아-아프리카 그룹에 속했다. 국내 집단의 살충제 감수성을 분석하기 위해 작용기작이 서로 다른 7 가지(4 종류의 신경독 약제, 1 종류의 곤충성장조절제, 2 종류의 생물농약)의 약제로 평가하였다. 콩명나방의 어린 유충은 분석된 모든 약제에 비교적 감수성이 높았다. 그러나 노숙 유충의 경우는 어린 유충에 비해 감수성이 현저하게 저하되었다. 처리 후 7 일간 분석된 살충력 조사에서 조사된 어느 약제도 콩명나방의 최종령 유충을 효과적(> 50% 방제가)으로 방제하지 못하였다.
Brachymystax lenok tsinlingensis (family Salmonidae), cold freshwater fish, is endemic to Asia. This species is currently distributed throughout Russia, Mongolia, China and the Korean Peninsula. B. lenok tsinlingensis in South Korea was severely affected by anthropogenic activities such as habitat destruction, agricultural run-off and water pollution, and hence this fish has recently been dramatically decreased in its population sizes and become now critically endangered. To recover the number of individuals of B. lenok tsinlingensis, stocking or translocation programs have been conducted continuously by local governments since 1970s. However, these programs made little effort to clarify populations that may have originated from stocked, translocated or introduced fish. An understanding of genetic characteristics of endangered populations is critical to develop effective conservation and restoration plans especially because genetic diversity ensues their future fate. Therefore, we assessed the “conservation status” of this species by estimating the level of genetic diversity and genetic structure among ten geographic populations including restored populations via reinforcement and supplementation. Also, we aimed to trace the genetic origins of the newly translocated population (Chiak) through a restoration practice program. Moreover, we inferred the phylogenetic relationships among Korean lenok populations as well as across the Northeast Asia. Two hundred eighteen individuals of B. lenok tsinlingensis were sampled from ten localities (Yanggu, Injae, Seorak, Bangtae and Hongcheon: North Han River basin; Pyeongchang, Chiak and Jeongseon: South Han River basin; Taebaek and Bonghwa: Nakdong River basin in South Korea). Based on mitochondrial DNA (mtDNA) control region and eight nuclear microsatellite loci, we found extremely low levels of within-population genetic diversity, which suggests small effective population sizes (Ne) within populations. For mtDNA control region, each population housed one, or at most, two haplotypes that are restricted to the respective localities, meaning that these ‘genetically unique’ lineages will be lost permanently if the local populations undergo extinction. The overall values of haplotype diversity (h) and nucleotide diversity (π) for the entire Korean population were 0.703 ± 0.024 and 0.021 ± 0.010, respectively. In the case of microsatellites, average number of alleles across the eight loci for the entire population was 9.1 and allelic richness (AR) per population ranged from 2.375 to 4.144 (mean = 3.104). The values of observed heterozygosity (HO) and expected heterozygosity (HE) were similar to each other [HO: 0.400 ~ 0.590 (mean = 0.518); HE: 0.407 ~ 0.608 (mean = 0.504)]. The inbreeding coefficient (FIS) values were generally low, ranging from 0.048 to 0.279. Consequently, the majority of the populations (except Yanggu and Pyeongchang) were not significantly deviated from Hardy-Weinberg equilibrium (HWE), suggesting random mating at these loci tested. In addition, we found that Korean lenok populations were significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles, indicating limited gene flow among populations, strong effects of genetic drift due to small Ne, or a combination of both. The Mantel test of microsatellites revealed a significant correlation (r = 0.414, P = 0.04) between genetic and geographic distances for pairwise comparisons among the ten populations, while that of mtDNA showed a lack of correlation. Given the shared identical mtDNA haplotype and similar microsatellite allelic distributions between Chiak and Hongcheon populations, we suggest that the restored (introduced) Chiak population would be inferred to be genetically originated from Hongcheon population. Phylogenetic relationships among Northeast Asian populations showed that South Korean lineages have more recently diverged from China (Yellow River), than between North Korea and Russia. Although the phylogenetic relationship would be expected to be associated with geography, South-North Korea and China populations with a similar latitude was more phylogenetically closely related. These findings may suggest a possible scenario for the historical movements of B. lenok tsinlingensis in Northeast Asia during Last Glacial Maximum (LGM). It would be supported by the line of evidence that most lenok populations migrated to southward from Northern Asia such as Russia and Mongolia during LGM because the Korean Peninsula was landlocked as inland epoch and functioned as a southern shelter with Yellow River. For this reason, the Korean Peninsula is suggested to be an important geographical region for better understanding phylogenetic relationships and evolutionary histories of B. lenok tsinlingensis across the Northeast Asia. Despite large efforts made to develop several restoration programs in South Korea for B. lenok tsinlingensis, it is still unknown whether these past restoration efforts were successful or fruitless, mainly because of little attention paid to post-restoration monitoring research. Hence, there was a lack of their published official records. In the future, conservation and restoration projects of the Korean lenok populations should consider the genetic data for a better understanding of their ecological and evolutionary trajectories. And finally, we hope that our findings here can help inform on the future effective conservation and restoration plans for B. lenok tsinlingensis populatio ns in South Korea.
Seagrasses, sea flowering plants, comprise approximately 60 species globally and are often called ‘ecosystem engineers’ because they create their own habitats by modifying the surrounding environments, which provide coastal zones with a number of crucial ecosystem services. Zostera marina (the common name ‘eelgrass’) is one of the seagrass beds-forming species distributed widely in northern hemisphere including the Korean coast, which plays a pivotal role in ecosystem as a primary producer and a nursery habitat or refuge for other marine organisms. However, due to global climate change and anthropogenic activities such as reclamation and dredging, there has recently been a drastic decline in population sizes of Z. marina in Korea. In order to develop effective conservation and restoration management programs of Z. marina populations, it would be helpful to consider all biological aspects of this species such as genetic characteristics as well as ecological and physiological features. This study first provides information on genetic diversity and genetic structure of Jeju Island and Namhae populations of Z. marina, which will contribute to the establishment of appropriate conservation and restoration management plans for future persistence of this species. Using six microsatellite markers, we investigated the level of genetic diversity and genetic structure among 10 geographic populations of Z. marina inhabiting Jeju Island (Hamdeok, Tokki-seom, Sungsan, Woljeong, Ojo) and Namhae (Gamak bay, Jindong bay, Nampo, Anggang bay, Geoje) on the southern coast of Korea. The level of genetic diversity within Jeju populations (mean allelic richness [AR]: 1.57 ~ 3.09) was found to be significantly lower than Namhae populations (AR: 3.09 ~ 4.29) (Mann-Whitney U-test, P < 0.05). These findings suggest that effective population sizes (Ne) of Jeju populations are generally smaller than those of Namehae populations. Within Jeju Island, Hamdeok population had the smallest population size (coverage: 138 m2) and the lowest genetic diversity (AR: 1.57), while Ojo population had the largest population size (coverage: 275,736 m2) and the greatest level of genetic diversity (AR: 3.09). Hamdeok population showed evidence of genetic bottleneck. These results again suggest that Ne of Jeju populations is generally low (except Ojo population). Among Jeju populations, all pair-wise comparisons of FST values (i.e., degree of genetic differentiation) were highly significant (FST = 0.0612 ~ 0.7168, P < 0.001) despite Jeju populations that were geographically closely located, indicating that these local populations are genetically divergent, probably due to a lack of gene flow among the populations. The observed strong population structure was substantiated by evidence that five genetic clusters are most likely, based on population assignment test (STRUCTURE). The Mantel test showed a positive relationship between genetic distance (FST) and geographic distance (km) across all the populations sampled (R2 = 0.4118, P < 0.05), suggesting that our data follow Isolation By Distance (IBD) model. Woljeong population revealed the highest level of FST values compared to other populations within Jeju Island in IBD. STRUCTURE and factorial correspondence analysis (FCA) further showed that some Woljeong individuals included genotypes of Namhae populations. Population size of Woljeong (coverage: 310m2) was approximately 50 % smaller than that of Sungsan (coverage: 841m2); however, extent of its genetic diversity (AR: 2.39) was even higher than that of Sungsan population (AR: 1.77). We speculated that Woljeong population underwent a transplantation from Namhae populations with relatively higher level of genetic diversity. FST values within Namhae populations were relatively lower (compared to within Jeju Island) despite the populations that were geographically more distant. It means that level of gene flow is higher among Namhae populations than among Jeju populations. Z. marina is known to have different life histories by water depth. In subtidal zone (deep water depth) populations predominantly undertake sexual reproduction through seeds such as annual life history, whereas those of intertidal zone (shallow water depth) undertake both sexual and asexual reproductions through horizontal rhizomes i.e., perennial life history. STRUCTURE analysis showed no clear differences between shallow and deep populations at Namhae, but some FST values were statistically significantly different despite their low values. For Geoje population sampled in 2005, intertidal and subtidal populations were not significantly different (FST = 0.0045, P = 0.033), but these populations sampled in 2015 showed a significant difference (FST = 0.0328, P < 0.001). It means that genetic structure of Geoje has been changed over the 10 year period between shallow and deep populations. Overall, the Jeju and Namehae populations analyzed in the current study have relatively low levels of genetic diversity and distinct genetic compositions, which warns the message that this ecologically important species should be conserved separately in the local populations and with high priority. We propose that future conservation and restoration plans for seagrasses should consider genetic characteristics particularly because a close relationship between genetic diversity and ecological performance in marine species has been well documented.
Sesame is queen of oil seed crops and widely cultivated in Asia and Africa. The aim of this study was to develop a mini sub core set representing the diverse germplasm of sesame and to assess the genetic diversity, population structure and phylogenetic relationship of the resulted sub core set to be used in whole genome resequencing platform. One hundred twelve accessions out of 277 accessions were selected by the PowerCore program. A total of 155 alleles were captured from the 158 alleles detected in the primary core population, and rare alleles and specific alleles were also maintained in the sub core set accessions representing almost 100% of the primary core population. Among the sub core set accessions, four sub populations were observed with some admixture accessions. Although the genetic diversity of Pop-1 which includes most accessions from Korea is relatively lower than that of other three sub populations, it can maintain maximum number of accessions in the sub core set with the same percentage as in the primary core set probably because of the specific features of these accessions. Based on this framework of genetically defined populations, the effective use and conservation management of Sesamum indicum for crop improvement might be possible.
본 연구는 한국 희귀종인 한란의 보전을 위하여 ISSR 표지자를 이용한 유전변이와 분화 및 공간적 유전구조를 분석하였다. 분석된 유전다양성(Species level: h=0.303, S.I=0.389)은 근연종과 다른 희귀 종에 비해 높은 유전변이를 나타내었다. 또한 유전자형 다양성(Species level: GN/N=0.884, D=0.996) 역시 높게 나타나 주로 타가수정이 이루어지는 것으로 조사되었다. 한편, 소집단 A와 B 간에 분화정도 는 23%로 소집단 간의 인접거리를 고려했을 때, 집단 내에서도 분포의 위치에 따라 분화가 발생하고 있었다. 높은 수준의 유전다양성과 분화의 발생요인을 고려했을 때, 과거 외부에서 지속적으로 유입된 한란 개체로부터의 영향과 매개충의 역할이 주요한 원인으로 추정되었다. 소집단의 공간적 유전구조 분 석에서 A는 9m, B는 6m 이내에 분포하는 개체들 간에 유전적 유사성이 높은 것으로 나타났다. 이 결 과를 바탕으로 한란의 현지 외 보전을 위한 표본 추출 시 최소 9m 이상의 간격을 유지하는 것을 제안 하는 바이다.
White-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is known as a long-range migratory pest in Asia. Although exact primary source of S. furcifera in Korea remains unknown. We used twelve microsatellite markers (SSR) to analyze the population genetic structure of the pest. We collected S. furcifera from Asia in 2012 (Korea, Laos, Nepal, Thailand, Vietnam and four different sites of Bangladesh), 2013 (China, Nepal, Thailand, two different sites of Bangladesh, and fifteen different sites of Korea), and 2014 (four different sites of China and ten different sites of Korea). To verify the genetic variance, we used STRUCTURE program to obtain structure analysis of K and K showed in three components in genetic clustering. Result in sample 2012, similar genetic structure showed in Korea and Vietnam. In 2013 and 2014, various genetic structure revealed in different sites of Korea and Asian population genetic structure appeared as on large panmictic population. Furthermore, we tested migration pathway to see the probable source and reciplent populations of first generation migrants in S. furcifera. In 2012, Laos, Nepal, Thailand, Vietnam and four different sites of Bangladesh showed the potential source of S. furcifera. In 2013, we observed S. furcifera in Korea was more likely originated from Nepal and Bangladesh. Various migration pathway showed in fifteen different sites of Korea as panmictic population. Lastly in 2014, the migration pathway indicated that S. furcifera migrates from China to Korea. Seemingly, S. furcifera in Asia display as large panmictic population and more study is acquire to verify the origin source.
Metcalfa pruinosa has been spreading in Korea since 2005, which its first report at Gimhae in Kyeongnam province. It has been harmful to grape and major forest crops by direct sucking and indirect transmitting sooty mold disease causing economical loss. It is necessary to study its tracing route and movement conditions for the further efficient population management and prevention of its re-invasion. A total of 23 haplotype were observed in the analysis of nucleotide polymorphisms on mitochondrial cytochrome c oxidase I from total 124 voucher specimens among five countries. Only two haplotypes were exist in Korea and HAP1 was accorded with its of some European individuals. Moreover, the analysis of FST and AMOVA, the Korean population was relatively nearer with Spanish and Italian population than American populations, suggesting the Korean population might be originated from some European countries. Eight microsatellite loci were developed and characterized to facilitate more delegate population genetic analysis from 468 individual in five countries. The average character of each or overall population was revealed 18 average individual number, six alleles and 0.676 heterozygosity. The genetic distance (FST) was a little bit high among each populations ranged as – 0.010~0.245. In the tracing route analysis, the originating country of Korean population was also shown as migrated from some European countries. The population genetic analysis using genetic markers will be useful to trace the origin of pest and prevent from re-invasion fro efficient pest management.
The bumblebee, Bombus ignitus (Hymenoptera: Apidae), is a valuable natural resource that is widely utilized for greenhouse pollination in South Korea. Understanding the magnitude of genetic diversity and geographic relationships is of fundamental importance for long term preservation and utilization. As a first step, we sequenced a partial COI gene of mitochondrial DNA (mtDNA) corresponding to the “DNA barcode” region and the complete internal transcribed spacer 2 (ITS2) of nuclear ribosomal DNA from 88 individuals collected in nine South Korean localities. The complete ITS2 sequences were longest among known insects, ranging in size from 2,034 bp ~ 2,052 bp, harboring two duplicated 112-bp long repeats. The 658-bp long mtDNA sequences provided only six haplotypes with a maximum sequence divergence of 0.61% (4 bp), whereas the ITS sequences provided 84 sequence types with a maximum sequence divergence of 1.02% (21 sites). The combination of the current COI data with those of published data suggest that the B. ignitus in South Korea and China are genetically a large group, but those in Japan can be roughly separated into another group. Overall, a very high per generation migration ratio, a very low level of genetic fixation, and no discernable hierarchical population were found to exist among the South Korean populations of B. ignitus, which suggests panmixia. This finding is consistent with our understanding of the dispersal capability of the species.
The ant species, Vollenhovia emeryi, is distributed in Far East. The species can be divided into two major groups by their wing morphology of reproductives: short-winged and long-winged. A nationwide survey of the species was conducted for analyzing the mitochondrial haplotype diversity and genetic population structure. We collected 91 samples from 40 locations. A total of the 1239 bp partial COI (cytochrome C oxidase 1) region was used for the analyses. We found the total of 21 haplotypes. The mitochondrial haplotypes may correspond to the wing morphology. The genetic population structure examined potential geographic barriers of gene flow such as distance, mountains, rivers and plains which are non-mountain areas to prevent dispersal through mountain range. The result implied that no barriers considered in this study affected differently gene flow. Therefore, the behavioral characteristics of the ant may be the causal constraint of its genetic exchange.
Aphids (Hemiptera: Aphididae) are well known as micro-insect pests, which are very specific to their host plants, sucking phloem for acquiring nutrients, and most of them have successfully maintained parthenogenetic generations cyclically or permanently. In the world, the approximately 5,000 described aphid species belong to the family Aphididae, which has taxonomically been subdivided into 27 subfamilies in current. The diversification of host plants, especially angiosperms, has played an important role in their evolution. Major questions about aphid evolution include origins of host alternation as well as age and patterns of diversification in relation to host plants. To address these, I did both macroscale (phylogenetics) and microscale (population genetics) researches on aphids. First I reconstructed the phylogeny of the three major aphid groups, Aphidini, Macrosiphini, and Pterocommatinae, which are the most diverse in the world and constitute more than 60% of the total species. These major lineages demonstrate the evolutionary history of aphids interacting with their host plants. I also used molecular dating method to calculate reasonable divergence time on each clade. Based on phylogenetic and dating analyses, most generic divergences in Aphidinae occurred in the Middle Tertiary when primary hosts, mainly Rosaceae, were diverging, whereas species-level divergences were related with diversification of secondary hosts such as Poaceae in the Middle to Late Tertiary. Most generic divergences in Aphidini occurred in the Middle Tertiary, and species-level divergences occurred between the Middle and Late Tertiary. The divergence times of aphid lineages at the generic or subgeneric levels are close to those of their primary hosts. Second I performed population genetics of the polyphagous cotton-melon aphid, Aphis gossypii Glover. I analyzed population genetic structure between 570 aphids collected from 41 plant species of primary and secondary, mostly wild, hosts using 9 microsatellite loci. As results, population structure of A. gossypii revealed that several genetic affinities in common use of some secondary and primary hosts are detected. Host preference in secondary host is higher than that in primary host, and woody plants share same genetic structure. This species might speciated by the related mechanisms such as host alternation and loss of primary host. I will propose macro- and micro-evolutionary patterns of the Aphidini aphids based on integrating phylogenetic and population genetic approaches
본 연구는 멸종위기식물인 단양쑥부쟁이(Aster altaicus var. uchiyamae)의 개체군을 대상으로 유전다양성을 유지하는데 필요한 최소개체수를 산정하기 위하여 수행되었다. 단양쑥부쟁이가 분포하고 있는 네 지역에서 각각 유전다양성 및 유전적 분화도를 분석하였다. AFLP(amplified fragment length polymorphism) 마커를 이용한 유전적 변이의 분석결과, 총 4개의 프라이머 조합에 대해서 936개의 밴드가 확인되었으며, 그 중 934개의 밴드(99.8%)가 다형성을 보여주었다. 단양쑥부쟁이 개체군 내에서 유전다양성(PPB = 45.3%, h = 0.104, I = 0.168, hs = 0.108)은 높은 수준으로 나타났으며, 개체군 간 유전적 분화도(GST = 0.075, θB = 0.079)는 낮은 수준이었다. AMOVA(Analysis of molecular variance)분석 결과에서도 전체 유전적 변이 중 91%가 개체군 내에서 보이는 반면, 9%는 개체군 간 변이에 기인한 것으로 나타났다. 단양쑥부쟁이 개체군에서 보이는 유전적 특성은 개체군 간의 빈번한 유전자 이동에 기인한 것으로 사료된다. 최대화 전략법에 의하여 경기도 여주일대의 3개 개체군을 대상으로(굴암, 도리섬, 삼합) 개체군 내 최소개체수를 산정한 결과 도리섬개체군에서는 17개체, 삼합개체군에서는 16개체, 굴암개체군에서는 11개체로 파악되었다. 단양쑥부쟁이 개체군의 최소개체수에 대한 정보는 효율적인 현지 외 보전을 위한 가이드라인을 제시해 줄 수 있다.