검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 769

        601.
        2005.01 KCI 등재 서비스 종료(열람 제한)
        Surface sediments (0~4 cm) were sampled at 40 stations from Ulsan Bay and its adjacent areas of Korea, to evaluate the contamination by sewage-derived organic matters using fecal sterols. Some sterols were quantified by gas chromatography coupled to mass spectrometry (GC/MS). Total concentrations of eight sterols (coprostanol, cholesterol, cholestanol, epicholestanol, epicoprostanol, β-sitosterol, brassicasterol, and stigmasterol) in the sediments from Ulsan Bay and its vicinity varied from 929 to 23,444 ng/g dry weight. The most predominant sterols were cholesterol and coprostanol, accounting for 33~72% of total sterols. The concentration of coprostanol known as the indicator of human feces ranged from 141 to 8,257 ng/g dry weight. In particular, the coprostanol concentrations in the sediments from Jansaengpo Harbor and Taehwa River exceeded the value of 1,000 ng/g dry weight, suggesting that these areas could be considered as the hot-spot zones by municipal sewage contamination. Some molecular indices and multivariate data analysis were used to assess the origin of these sterols in the sediments. Results showed that the major routes of sewage contamination in Ulsan Bay and its vicinity were the input through Jansaengpo Harbor and Taehwa River.
        603.
        2004.10 KCI 등재 서비스 종료(열람 제한)
        The purpose of this research was evaluated economical effect to apply alternative external carbon source. Conventional activated sludge process in municipal wastewater treatment plant was adapted and introduced to Biological nutrient removal processes to meet the newly enforced effluent quality standard for nutrient removal in Korea. Low COD/NH4+-N ratio and higher nutrient concentration of influent characteristics force to inject external carbon source for denitrifying recycled nitrate. In the most case, methanol was used as external carbon source. But Methanol is expensive and very dangerous in handling. So we could find cheaper and safer external carbon source substituted methanol in last study. This alternative external carbon source is named RCS(recoverd carbon source) and a by-product of fine chemical product at chemical plant. When RCS was applied real municipal wastewater treatment plant, average 55~65% of T-N removal efficiency, 8.8mg/l of effluent T-N concentration, 11.3mg/l of effleunt COD concentration were obtained without effluent COD increase as against used methanol. To apply RCS in municipal wastewater treatment plant obtain approximately 74.5% expenditure cost reduction in comparison with methanol dosage cost.
        616.
        2004.09 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to analyze the operating conditions of predenitrification process to improve the treatment efficiency in low organic loading sewage plant in use today, and to investigate the treatment efficiency of pilot plant added night soil as well as the nitrogen removal characteristics of pilot plant added carbon sources. In the operation under the condition of BOD5 sludge load 0.03-0.28kg BOD5/kg VSS/d and oxic ammoniac nitrogen sludge load 0.02-0.24 kgNH4+-N/kg MLVSS/d, nitrification efficiency is higher than 95%. In order to achieve 70% nitrogen removal at the T-N sludge loading 0.06kg T-N/kg VSS․d and the SRT 6~11 days, optimum operating factors were revealed to CODcr/T-N ratio 9, recycle ratio 2.6, and denitrification volume ratio 0.33. At this time, denitrification capacity was approximately 0.09 kg NO3--N/kg CODcr; specific nitrification rate was 3.4mg NH4+-N/g MLVSS/hr; and specific denitrification rate was 4.8mg NO3--N/g MLVSS/hr.
        617.
        2004.07 KCI 등재 서비스 종료(열람 제한)
        This study was focused on the manufacturing method of a dewatering aid, which would reduce the water content of the sludge cake by enhancing the dewaterability of sewage sludge. The pretreatment technology for sludge by using radiation and among diverse discarded resources were starfish selected as the material to manufacture the dewatering aid. Starfish went through the process of washing, drying, and pulverizing. The starfish powder made in this process was applied to the digested sludge generated at the sewage treatment plant of D City, and its effects were investigated. The starfish powder that was 300 μm in particle size was added to the irradiated digested sludge. After the application of the condensation process, the sludge with the starfish powder added was dewatered using the belt press and centrifuge, which were the traditional pressure dewatering devices. As the result, it reduced the water content of the sludge 20% higher than the dewatered cake with no dewatering aid added and irradiation. When the powder was added, it contributed to less use of the coagulant added. The more irradiation dose, the lower water content did the dewatered cake have and the more coagulant was needed for condensation, which seems to be a disadvantage that can be compensated for by the starfish dewatering aid. A small-scaled treatment of the study to a radiation technology and dewatering aid using a discarded resource confirmed the potential of dewaterability. Based on the results saying that the dewatering aid and radiation technology can improve dewatering effects using the traditional dewatering devices, this pretreatment technology will be expected to be applied to sewage treatment plants.