검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 97

        63.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80 to 110, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 , the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.
        4,000원
        64.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study for producing the flake powders by milling of aluminum foil and gas atomized powders was carried out. The effects of lifter bars on the ball motions and milling of aluminum foils were also investigated. The aluminum foils were laminated each other, elongated, fragmented into small foils and finally formed into the flake powders during the dry ball-milling. The spherical atomized-powders were milled to coarse flake powders with high aspect ratio and then changed to fine flake powders with lower aspect ratio. Even though long times were required for making flake powders by milling of foils, the water covering areas of them were higher than those of powders milled using gas-atomized powders, suggesting aluminum foils were more plastically deformed by micro-forging. On the other hand, as the number of lifter bars increased, the necessary rotation speeds of milling jar for cascading mode and cataracting mode decreased drastically. It was possible to achieve same quality of milled flake powder by using the lifter bars under the lower milling speeds. The painting test showed that the appearance of painted surface was good and optimum content range of aluminum paste in car paint to maximize the degree of gloss was 3-5%.
        4,000원
        65.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized Ni-ferrite powder was fabricated by spray pyrolysis process using the waste solution resulting from shadow mask processing. The average particle size of the powder was below 100 nm. The effects of the concentration of raw material solution, the nozzle tip size and air pressure on the properties of powder were studied. As the concentration increased, the average particle size of the powder gradually increased and its specific surface area decreased, but size distribution was much wider and the fraction of the Ni-ferrite phase greatly increased as the concentration increasing. As the nozzle tip size increased from 1 mm to 2 mm, the average particle size of the powder decreased. In case of 3 mm nozzle tip size, the average particle size of the powder increased slightly. On the other hand, in case of 5 mm nozzle tip size, average particle size of the powder decreased. Size distribution of the powder was unhomogeneous, and the fraction of the Ni-ferrite phase decreased as the nozzle tip size increasing. As air pressure increased up to 1 kg/, the average particle size of the powder decreased slightly, on the other hand, the fraction of the Ni-ferrite phase was almost constant. In case of 3kg/ air pressure, average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased, but size distribution was narrow.
        4,000원
        66.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100 showed poor elongation and low fracture strength, while the Wi rods sintered above 100 revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100 are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8 to 10. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.
        4,000원
        71.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        P/M high speed steels with various Co contents were fabricated by gas atomization and Canning/HIP process. As Co content in P/M high speed steel increased, hardness, transverse rupture strength and yield strength in compressive testing increased due to solid solution hardening of Co in matrix. Especially, PM high speed steels with Co have high deformation resistance to repeated compressive loading.
        3,000원
        72.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventional Fe-Co alloys are important soft magnetic materials that have been widely used in industry. Compared to its polycrystalline counterpart, the nanostructured materials have showed superior magnetic properties, such as higher permeability and lower coercivity due to the single domain configuration. However, magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. In the present work, starting with two powder mixtures of Fe and Co produced by mechanical alloying (MA) and hydrogen reduction process (HRP), differences in the preparation process and in the resulting microstructural characteristics will be described for the nano-sized Fe-Co alloy particles. Moreover, we discuss the effect of the microstructure such as crystal structure and grain size of Fe-Co alloys on the magnetic properties.
        4,000원
        73.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, and in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the was largely shrank by heating up at the constant heating rate of /min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120- in the debinding process was controlled for the most suitable MIM condition.
        4,000원
        1 2 3 4 5