검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Potato cultivation area in Kazakhstan has been steadily increasing for ten years from 154,000 ha in 2006 to 186,000 ha in 2016. The production amounts are also increasing from 2,360,000 tons in 2006 to 3,550,000 tons in 2016. The average yield(/ha) was 19.0 ton in 2016 while 15.4 tons in 2006. The import volume increased by about 3.2 folds for seven years from 34,874 tons in 2006 to 112,323 tons in 2013. The import price(/ton) has been also showing steady increasing from $180(USD) in 2006 to $202(USD) in 2013. The export volume dramatically increased from 73 tons in 2006 to 8,455 tons in 2013. It shows that the potato trade with neighboring countries is very active recently. Kazakhstan need seed potato of around 700,000 tons each year, which is more than the total production yield (600,000 tons/ year) of Korean potato. Seed potatoes are imported from Europe by the private seed companies and then distributed to farmers after multiplications for two or three years. Potatoes are sown in May and harvested in September or October, which is similar to the summer cropping in Korean potato. The European cultivars such as ‘Sante’ and ‘Rodeo’ are preferred broadly due to their high temperature resistance, salt tolerance, long dormancy period, and yellow flesh color. Meanwhile, Early blight and Colorado potato beetle are known as the main problems at Kazakhstan potato fields. The big yield loss by insects or diseases during storage is one of the severe problems too. Considering the internal and external circumstances of Kazakhstan potato, it is expected that the Korea's high-quality seed potatoes and the post-harvest management technologies could be helpful to enter the Kazakhstan potato market effectively as well as to increase the market competitiveness.
        4,000원
        2.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80 to 110, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 , the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.
        4,000원
        3.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized Ni-ferrite powder was fabricated by spray pyrolysis process using the waste solution resulting from shadow mask processing. The average particle size of the powder was below 100 nm. The effects of the concentration of raw material solution, the nozzle tip size and air pressure on the properties of powder were studied. As the concentration increased, the average particle size of the powder gradually increased and its specific surface area decreased, but size distribution was much wider and the fraction of the Ni-ferrite phase greatly increased as the concentration increasing. As the nozzle tip size increased from 1 mm to 2 mm, the average particle size of the powder decreased. In case of 3 mm nozzle tip size, the average particle size of the powder increased slightly. On the other hand, in case of 5 mm nozzle tip size, average particle size of the powder decreased. Size distribution of the powder was unhomogeneous, and the fraction of the Ni-ferrite phase decreased as the nozzle tip size increasing. As air pressure increased up to 1 kg/, the average particle size of the powder decreased slightly, on the other hand, the fraction of the Ni-ferrite phase was almost constant. In case of 3kg/ air pressure, average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased, but size distribution was narrow.
        4,000원