검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 773

        84.
        2022.11 구독 인증기관·개인회원 무료
        본 연구는 해양시설의 HNS 배출허용기준 체계에 적용 가능한 사회적 영향인자 평가방법 및 절차를 도출하는데 목적이 있다. 인천광역시 소재 해양시설 71개소로 대상으로 기업규모에 따라 대기업, 중견기업, 중소기업, 소기업으로 구분하였고, 신규 기술도입비용 은 5년간 분산하여 적용하는 경우로 추산하였다. 분석결과는 다음과 같다. 첫째, 산업분야 항목에서는 경영상부담정도를 나타내는 지표 중 매출액감소 1점, 영업이익률감소 평균 3.5점, 도산가능성 2.7점으로 평가되어, 평균 2.7점으로 ‘영향있다’로 평가되었다. 둘째, 지역경제 항목의 평가지표 중 주민보건비지출부담 4점, 관광수입손실액 4점, 어업생산량감소 2점 등 전체 평균 3.3점으로 ‘영향크다’로 평가되었 다. 평가결과 산업적인 면에서는 소기업, 중기업, 대기업 간에 미치는 영향편차가 큰데, 대기업은 영향이 거의 없었고, 소기업은 영향을 크게 받는 것으로 나타났다. 지역경제면에서는 주민보건비지출부담, 관광수입감소, 어업생산량감소 등이 지역경제에 미치는 영향은 두가 지로 구분하여 볼 수 있는데, 지역전체 GRDP에 미치는 영향은 매우적지만, 해당 종사자나 주민 개인에 미치는 영향은 영향이 큰 것으로 나타났다.
        85.
        2022.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.
        4,000원
        86.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the development of the industry, the machinery of plant facilities becomes large and operates at high speed and high power. Workers at plant facility sites are exposed to high noise and impact noise, and the number of people with noise-induced hearing loss is increasing every year. Therefore, in order to minimize such damage, many efforts have been made to reduce the noise of large machines in production facilities. Measures, education, and recommendation of wearing hearing protectors are needed to protect the hearing of workers in high noise industries. In addition, it is urgent to reduce noise sources by blocking noise propagation paths, such as installing noise boxes and silencers, and installing facilities and equipment that generate less noise. It is necessary to repair the noise reduction device of the large machine of the plant or to study the noise reduction device when designing the plant.
        4,000원
        87.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        사물인터넷(IoT) 기술을 활용한 전력 사용량 모니터링은 스마트팜 운영비 절감 기술 개발을 위한 기초자료로 필요성이 부각되고 있다. 본 연구에서는 멜론 생산 스마트팜 운영 중 실시간 전력사용량 모니터링 시스템을 설치한 예를 소개하고 이 를 이용하여 수집된 데이터를 실시간으로 활용하는 방법을 제 안한다. 전력사용량 모니터링 시스템의 실증을 위하여 멜론 스마트팜에서 3개월의 멜론 재배기간 동안 보일러, 양분분배 시스템, 자동제어기, 순환팬, 보일러제어기, 기타 IoT 관련 유 틸리티 등 스마트팜 시설에서 사용하는 개별 전원 기구들의 전력사용량 데이터를 수집하였다. 모니터링 결과를 이용하여 전기에너지 소비패턴의 예시를 분석하고, 측정 데이터를 최 적으로 활용하기 위해 필요한 고려사항을 제시하였다. 본 논 문은 전력사용량 모니터링 시스템을 새로이 구축하고자 하는 유저들에게 기술적 진입장벽을 낮추고 생성된 데이터 활용 시 시행착오를 줄이는 데 유용한 자료가 될 것으로 사료된다.
        4,000원
        88.
        2022.10 구독 인증기관·개인회원 무료
        In general, after the decommissioning of nuclear facilities, buildings on the site can be demolished or reused. The NSSC (Nuclear Safety and Security Commission) Notice No. 2021-11 suggests that when reusing the building on the decommissioning site, a safety assessment should be performed to confirm the effect of residual radioactivity. However, in Korea, there are currently no decommissioning experiences of nuclear power plants, and the experiences of building reuse safety assessment are also insufficient. Therefore, in this study, we analyzed the foreign cases of building reuse safety assessment after decommissioning of nuclear facilities. In this study, we investigated the Yankee Rowe nuclear power plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility. For each case, the source term, exposure scenario, exposure pathway, input parameter, and building DCGLs were analyzed. In the case of source term, each facility selected 9~26 radionuclides according to the characteristics of facilities. In the case of exposure scenario, building occupancy scenario which individuals occupy in reusing buildings was selected for all cases. Additionally, Rancho Seco also selected building renovation scenario for maintenance of building. All facilities selected 5 exposure pathways, 1) external exposure directly from a source, 2) external exposure by air submersion, 3) external exposure by deposited on the floor and wall, 4) internal exposure by inhalation, and 5) internal exposure by inadvertent ingestion. For the assessment, we used RESRAD-BUILD code for deriving building DCGLs. Input parameters are classified into building parameter, receptor parameter, and source parameter. Building parameter includes compartment height and area, receptor parameter includes indoor occupancy fraction, ingestion rate, and inhalation rate, and source parameter includes source thickness and density. The input parameters were differently selected according to the characteristics of each nuclear facility. Finally, they derived building DCGLs based on the selected source term, exposure scenario, exposure pathway, and input parameters. As a result, it was found that the maximum DCGL was 1.40×108 dpm/100 cm2, 1.30×107 dpm/100 cm2, and 1.41×109 dpm/100 cm2 for Yankee Rowe nuclear power plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility, respectively. In this study, we investigated the case of building reuse safety assessment after decommissioning of the Yankee Rowe nuclear power Plant, Rancho Seco nuclear power plant, and Hematite fuel cycle facility. Source terms, exposure scenarios, exposure pathways, input parameters, and building DCGLs were analyzed, and they were found to be different depending on the characteristics of the building. This study is expected to be used in the future building reuse safety assessment after decommissioning of domestic nuclear power plants. This work was
        89.
        2022.10 구독 인증기관·개인회원 무료
        A large spectrum of possible stakeholders and important factors for safety improvement during decommissioning of nuclear facilities should be identified. Decommissioning includes additional aspects which are of interest to a wider range of stakeholders. The way in which local communities, the public in general, and a wide range of other parties are engaged in dialogue about decommissioning of nuclear facilities is likely to become an increasingly important issue as the scale of the activity grows. Timely stakeholder involvement may enhance safety and can encourage public confidence. Stakeholder engagement may result in attention to issues that otherwise might escape scrutiny. Public confidence is improved if issues that are raised by the public are taken seriously and are carefully and openly evaluated. Experience in many countries has shown that transparency can be an extremely effective tool to enhance safety performance. It sets out the development and implementation of an effective two-way process between the organization and stakeholders. Meaningful engagement is characterized through a flow of communication, opinions and proposals in both directions and the use of collaborative approaches to influence and explain decisions. The process is one in which an organization learns and improves its ability to perform meaningful stakeholder engagement while developing relationships of mutual respect, in place of one-off consultations. The evolving nature of this process is particularly relevant to pipeline projects, which will have differing stakeholder engagement requirements at each phase of the project lifecycle. Activity undertaken at all stages of the process should be documented to ensure engagement success can be reviewed and improved and to ensure historical decisions or engagements are captured in case stakeholders change during the progression of time and previous consultation records are required.
        90.
        2022.10 구독 인증기관·개인회원 무료
        An induction melting facility includes several work health and safety risks. To manage the work health and safety risks, care must be taken to identify reasonably foreseeable hazards that could give rise to risks to health and safety, to eliminate risks to health and safety so far as is reasonably practicable. If it is not reasonably practicable to eliminate risks to health and safety, attention have to be given to minimize those risks so far as is reasonably practicable by implementing risk control measures according to the hierarchy of control in regulation, to ensure the control measure is, and is maintained so that it remains, effective, and to review and as necessary revise control measures implemented to maintain, so far as is reasonably practicable, a work environment that is without risks to health or safety. The way to manage the risks associated with induction melting works is to identify hazards and find out what could cause harm from melting works, to assess risks if necessary – understand the nature of the harm that could be caused by the hazard, how serious the harm could be and the likelihood of it happening, to control risks – implement the most effective control measures that are reasonably practicable in the circumstances, and to review control measures to ensure they are working as planned.
        91.
        2022.10 구독 인증기관·개인회원 무료
        In the field of 3H decontamination technology, the number of patent applications worldwide has been steadily increasing since 2012 after the Fukushima nuclear accident. In particular, Japan has a relatively large number of intellectual property rights in the field of 3H processing technology, and it seems to have entered a mature stage in which the growth rate of patent applications is slightly reduced. In Japan, tritium is being decontaminated through the Semi-Pilot-class complex process (ROSATOM, Russia) using vacuum distillation and hydrogen isotope exchange reaction, and the Combined Electrolysis Catalytic Exchange (CECE, Kurion, U.S.) process. However, it is not enough to handle the increasing number of HTOs every year, so the decision to release them to the sea has been made. Another commercial technology in foreign countries is the vapor phase catalyst exchange process (VPCE) in operation at the Darlington Nuclear Power Plant in Canada. This process is a case of applying tritium exchange technology using a catalyst in a high-temperature vapor state. The only commercially available tritium removal technology in Korea is the Wolseong Nuclear Power Plant’s Removal Facility (TRF). However, TRF is a process for removing HTO from D2O of pure water, so it is suitable only for heavy water with high tritium concentration, and is not suitable for seawater caused by Fukushima nuclear power plant’s serious accident, and surface water and groundwater contaminated by environmental outflow of tritium. Until now, such as low-temperature decompression distillation method, water-hydrogen isotope exchange method, gas hydrate method, acid and alkali treatment method, adsorption method using inorganic adsorbent (zeolite, activated carbon), separator method using electrolysis, ion exchange adsorption method using ion exchange resin, etc. have been studied as leading technologies for tritium decontamination. However, any single technology alone has problems such as energy efficiency and processing capacity in processing tritium, and needs to be supplemented. Therefore, in this study, four core technologies with potential for development were selected to select the elemental technology field of pilot facilities for treating tritium, and specialized research teams from four universities are conducting technology development. It was verified that, although each process has different operating conditions, tritium removal performance is up to 60% in the multi-stage zeolite membrane process, 30% in the metal oxide & electrochemical treatment process, 43% in the process using hydrophilic inorganic adsorbent, and 8% in the process using functional ion exchange resin. After that, in order to fuse with the pretreatment process technology for treating various water quality tritium contaminated water conducted in previous studies, the hybrid composite process was designed by reflecting the characteristics of each technology. The first goal is to create a Pilot hybrid tritium removal facility with 70% tritium removal efficiency and a flow rate of 10 L/hr, and eventually develop a 100 L/hr flow tritium removal system with 80% tritium removal efficiency through performance improvement and scale-up. It is also considering technology for the postprocessing process in the future.
        92.
        2022.10 구독 인증기관·개인회원 무료
        During and after the construction of LILW disposal facilities, the decrease of groundwater head potential has been monitored. In addition, an increase of the electrical conductivity (EC) has been observed in several monitoring wells installed along the coastal coastline. Monitoring activity for groundwater head potential and hydrogeochemical properties is important to reduce the uncertainty in the evaluation of groundwater flow characteristics. However, the data observed in the monitoring wells are spatial point data, so there is a limit to the dimension. Several researchers evaluated groundwater head potential changes and seawater intrusion (SWI) potential for disposal sites using groundwater flow modeling. In case of groundwater flow modeling results for SWI, there is a spatial limit in directly comparing the EC observed in the monitoring wells with the modeling results. In a recent study, it was confirmed that the response of the long-range ground penetraiing radar (GPR) system was severely attenuated in the presence of saline groundwater. In order to reduce the spatial constraint of the groundwater monitoring wells for SWI, the characteristics of SWI within the disposal facility site by using the the results of a recent study of the long-range GPR system were investigated and evaluated in this study.
        93.
        2022.10 구독 인증기관·개인회원 무료
        Radiation dose rates for spent fuel storage casks and storage facilities of them are typically calculated using Monte Carlo calculation codes. In particular, Monte Carlo computer code has the advantage of being able to analyze radiation transport very similar to the actual situation and accurately simulate complex structures. However, to evaluate the radiation dose rate for models such as ISFSI (Independent Spent Fuel Storage Installation) with a lot of spent fuel storage casks using Monte Carlo computational techniques has a disadvantage that it takes considerable computational time. This is because the radiation dose rate from the cask located at the outermost part of the storage facility to hundreds of meters must be calculated. In addition, if a building is considered in addition to many storage casks, more analysis time is required. Therefore, it is necessary to improve the efficiency of the computational techniques in order to evaluate the radiation dose rate for the ISFSI using Monte Carlo computational codes. The radiation dose rate evaluation of storage facilities using evaluation techniques for improving calculation efficiency is performed in the following steps. (1) simplified change in detailed analysis model for single storage cask, (2) create source term for the outermost side and top surface of the storage cask, (3) full modeling for storage facilities using casks with surface sources, (4) evaluation of radiation dose rate by distance corresponding to the dose rate limit. Using this calculation method, the dose rate according to the distance was evaluated by assuming that the concrete storage cask (KORAD21C) and the horizontal storage module (NUHOMS-HSM) were stored in the storage facility. As a result of calculation, the distance to boundary of the radiation control area and restricted area of the storage facility is respectively 75 m / 530 m (KORAD21C case), and 20 m / 350 m (NUHOMS-HSM case).
        94.
        2022.10 구독 인증기관·개인회원 무료
        Some Spent Fuel Pools (SFPs) will be full of Spent Nuclear Fuels (SNFs) within several years. Because of this reason, building interim storage facilities or permanent disposal facilities should be considered. These storage facilities are divided into wet storage facilities and dry storage facilities. Wet storage facility is a method of storing SNF in SFP to cool decay heat and shielding radiation, and dry storage facility is a method of storing SNF in a cask and placing on the ground or storage building. However, wet storage facilities have disadvantages in that operating costs are higher than that of dry storage facilities, and additional capacity expansion is difficult. Dry storage facilities have relatively low operating costs and are relatively easy to increase capacity when additional SNFs need to be stored. For this reason, since the 1990s, the number of cases of applying dry storage facilities has been increasing even abroad. Dry storage facilities are divided into indoor storage facilities and outdoor storage facilities, and outdoor storage facilities are mostly used to take advantage of dry storage facilities. In the case of outdoor storage facilities, the cask in which SNFs are stored is placed on a designed concrete pad. During this storage, the boring heat generated by SNFs cools into natural convection and the cask shields the radiation that SNFs generates. However, if an accident such as an earthquake occurs and the cask overturns during storage, there may be a risk of radiation leakage. Such a tip-over accident may be caused by the cask slipping due to the vibration of an earthquake, or by not supporting the cask properly due to a problem in the concrete pad. Therefore, in the case of outdoor dry storage facilities, it is necessary to evaluate the seismic safety of concrete pads. In this paper, various soil conditions were applied in the seismic analysis. Soil conditions were classified according to the shear wave velocity, and the shear wave velocity was classified according to the ground classification criteria according to the general seismic design (KDS 17 10 00). The concrete pad was designed with a size that 8 casks can be arranged at regular intervals, and 11# reinforcing bars were used for the design of the internal reinforcement of the concrete pad according to literature research. The cask was designed as a rigid body to shorten the analysis time. The soil to which the elastic model was applied was designed under the concrete pad, and infinite elements were applied to the sides and bottom of the soil. The effect on the concrete pad and cask by applying a seismic wave conforming to RG 1.60 to the bottom of the soil was analyzed with a finite element model.
        95.
        2022.10 구독 인증기관·개인회원 무료
        In order to enter a nuclear power plant, access approval is required in advance, and biometric information such as fingerprints of visitors must be registered when issuing a key card, and only those certified through biometric equipment can enter the nuclear facilities (Protected area II). Fingerprint recognizers and facial recognizers are installed and operated in domestic nuclear facilities for access control. Domestic nuclear facilities establish and implement a protection system in accordance with physical protection requirements under the “Act on Physical Protection and Radiological Emergency” and “Physical Protection Regulations” of each nuclear facility. Detailed implementation standards are specified in Regulation Standard (RS) documents established and distributed by KINAC. Biometrics are mentioned in a KINAC RS-104 (Access Control) document. In this study, it was analyzed what points should be considered in order to prepare for performance tests and establish plans for biometric devices. In order for the results of performance evaluation of biometric devices to obtain high reliability and to be applied to nuclear facilities in the future, standardized performance evaluation targets, procedures, standards, and environments must be created. In order to collect samples such as fingerprints for performance evaluation, the size roll of the sample shall be determined, and the appropriateness of the sample size shall be evaluated in consideration of reliability and error range. In addition, the analysis results for the characteristics (gender, age, etc.) of the sample should be presented. When collecting samples, conflicts with other laws such as personal information protection should be considered, and the reliability of the performance test result data should be analyzed and presented. Quality evaluation should also be performed on forged biometric information data such as silicon fingerprints. In addition, when establishing a performance evaluation plan, a systematic evaluation procedure should be established by referring to domestic and foreign certification and evaluation systems such as the Korea Internet & security Agency (KISA). In order to improve the completeness of the access control system using the biometrics of nuclear facilities, it is necessary to test the performance of biometric devices and to install and operate only devices that have the ability to defend against counterfeit technology. In this study, it was analyzed what points should be considered in order to prepare for performance tests and establish plans for biometric devices.
        96.
        2022.10 구독 인증기관·개인회원 무료
        As drone technology and industry develop around the world, the use of drones are increasing in number and expanding to different fields. On the other hand, illegal flight and terrorist incidents using drones are also increasing day by day. In Korea, it is reflected in the “Design Basis Threat (DBT)”, which is the standard for designing and evaluating the physical protection system of nuclear power plants in accordance with the “Act on Physical Protection and Radiological Emergency”, that nuclear power plants continue to establish physical protection against drone threats. A total of 141 drone attacks or incidents have occurred around the world since 2015. Cases related to the Russian-Ukraine war, in which so many cases occurred, were excluded. There were 112 cases (79%) of terrorism or suspected terrorism using a single drone. There were 4 cases of terrorism using more than 5 drones, and a total of 20 drones were used to attack an oil facility in Yemen (2019). By region, a total of 111 incidents occurred in Middle East & North Africa. By country, there were 49 cases in Iraq, 35 cases in Saudi Arabia, and 8 cases in Syria. Among major countries, three cases occured in Korea, five in the United States, two in England, Canada, and Italy, and one in Japan and France. Since 2021, there have been 15 drone attacks. Multiple drones were used in attacks targeting military or large-scale Important National Facilities such as the Saudi oil refinery, Indian Kashmir air base, and reconnaissance of Iranian Natanz nuclear and surrounding military facilities. Also in 89% of the cases, the drones were loaded with explosives in order to cause large-scale damage. Accordingly, nuclear power plants, which are important national facilities, need to establish a system that can detect and respond to multiple drones. Furthermore, additional protective measures are needed for areas that are expected to be severely damaged which can be established by evaluating the impact of explosives on major points in the plant. In additionthere is a high possibility of terrorism by organizations aiming for national turmoil rather than individual terrorists. So it is important to identify signs of terrorism in advance and prepare through cooperation with related agencies.
        97.
        2022.10 구독 인증기관·개인회원 무료
        For national security, approximately 500 facilities have been designated as national security facilities. It is divided into grades A, B, and C depending on the fields such as electrics, energy and public service. In 2016, KINAC developed and suggested the installation standards and evaluation indicators for security equipment for national security facilities and they have been utilized to evaluate and manage the facilities. In order to update them by reflecting the recent security trend of the facilities and new technology, KINAC have investigated and updated the installation standards and evaluation indicators for security equipment. As a part of developing installation standards and evaluation indicators for national security facilities project, we conducted survey to identify the status and capabilities of facilities: how the security system is well designed, which type of security equipment is utilized. According to the results, the passive infrared (PIR) sensor is commonly used for interior intrusion detection (not included in 2016 project). Therefore, we investigated the passive infrared sensor and provided its installation standards and evaluation indicators. PIR sensor detects the energy generated by the objects which is different as their temperatures. PIR sensors do not emit any energy like active infrared sensor, and do not measure the energy. Rather, PIRs measure variation in thermal radiation. PIR sensor detects thermal energy by sensing the change between a heat source and the background temperature. In this paper, the characteristics and features of PIR sensor were discussed. Considering them, the standards and indicators to install/evaluated the PIR sensors were also proposed. The results would support national security facility to design and evaluate their security system.
        98.
        2022.10 구독 인증기관·개인회원 무료
        The guidelines for cyber security regulations at domestic and foreign nuclear facilities, such as KINAC/RS-015, NRC’s RG5.71 and NEI 13-10, require the establishment of security measures to maintain the integrity of critical digital assets (CDAs) and protect them as threats to the supply process. According to the requirements, cyber security requirements shall be reflected in purchase requirements from the time of introduction of CDAs, and it shall also be verified whether cyber security security measures were properly applied before introduction. Domestic licensees apply measures to control the supply chain in the nuclear safety sector to cyber security policies. The safety sector supply chain control policy has areas that functionally overlap with the requirements of cyber security regulations, so regulatory guidelines in the safety sector can be applied. However, since most of the emergency preparedness and physical protection functions introduce digital commercial products, there is a limit to applying the control of the supply chain in the safety field as it is. It is necessary to apply supply chain control operator policies, procedures, and purchase requirements for each SSEP function, or to establish cyber security integrated supply chain control requirements. In this paper, based on the licensee’s current supply chain control policy, the cyber security regulation plan for supply chain control according to the SSEP (Safety-Security-Emergency Preparedness) function of CDAs is considered.
        99.
        2022.10 구독 인증기관·개인회원 무료
        The IAEA states that in the event of sabotage, nuclear material and equipment in quantities that can cause high radiological consequences (HRC), as well as the minimum systems and devices necessary to prevent HRC, must be located within one or more vital areas. Accordingly, in Article 2 of the ACT ON PHYSICAL PROTECTION AND RADIOLOGICAL EMERGENCY, the definition of the vital area is specified, and a nuclear facility operator submits a draft to the Nuclear Safety and Security Commission to establish vital areas and must obtain approval from Nuclear Safety and Security Commission. Since the spent fuel pool and new fuel storage area are areas where nuclear material is used and stored, they can be candidates for vital areas as direct targets of sabotage. The spent fuel pool is a wet spent fuel storage facility currently operated by most power plants in Korea to cool and store spent nuclear fuel. Considering the HRC against sabotage, it is necessary to review whether sepnt fuel pool needs to establish a vital area. In addition, depending on the status of plant operation during the spent fuel management cycle, the operation status of safety systems to mitigate accidents and power system change, so vital areas in fuel handling building (including spent fuel pool) also need to be adjusted flexibly. This study compares the results of the review on whether the essential consideration factors are reflected in the identification of essential safety systems and devices to minimize HRC caused by sabotage in the spent fuel storage system with the procedure for identifying the vital area in nuclear power plants. It was reviewed from the following viewpoints: Necessity to identify necessary devices to minimize the radiation effects against sabotage on the spent fuel pool, Review of necessary elements when identifying vital areas to minimize the radiation effects of spent fuel pool against sabotage, Necessity to adjust vital areas according to the spent fuel management cycle. The main assumptions used in the analysis of the vital area of the power plant need to be equally reflected when identifying vital areas in spent fuel pool. And, the results of this study are for the purpose of minimizing the radiological consequences against sabotage on the spent fuel storage system including the spent fuel pool and used to establish regulatory standards in the spent fuel storage stage.
        100.
        2022.10 구독 인증기관·개인회원 무료
        Kori unit 1, Korea’s first light-water nuclear power plant, was permanently shut down in June 2017. The operator, Korea Hydro & Nuclear Power Co. (KHNP), submitted a final dismantling plan for Kori unit 1 to the Nuclear Safety and Security Commission (NSSC) in May 2021. Pursuant to this procedure, the NSSC is preparing regulations for the decommissioning stage of large nuclear facilities for the first time in the Republic of Korea. The Korea Institute of Nuclear Non-proliferation and Control (KINAC) is also considering applying regulations on safeguards. Moreover, the International Atomic Energy Agency (IAEA) developed the “International Safeguards Guidelines for Nuclear Facilities under Decommissioning” in 2021. The guidelines describe the detailed application of safeguards measures to be considered when decommissioning nuclear facilities, dismantling essential equipment, and providing relevant information to the IAEA, as well as the scope of IAEA inspections. In addition, Dr. R. Bari of the Brookhaven National Laboratory (BNL) proposed the Facility Safeguardability Assessment (FSA), a methodology that reflects facility characteristics from the design stage to ensure that designers, national regulators, and the IAEA communicate smoothly regarding safeguards measures. The FSA process derives expected problems with safeguards measures considering new nuclear facilities by analyzing the gap of safeguards measures applied to existing similar nuclear facilities. This study uses the existing FSA methodology to predict problems related to safeguards measures when decommissioning nuclear facilities and to analyze deviations from safeguards measure requirements according to IAEA guidelines. To this end, the reference facility is set as an operating pressurized light water reactor; the issues with the safeguards measures are summarized using the FSA Process; and a draft safeguards concept for nuclear facilities under decommissioning is designed. Furthermore, validity is confirmed through a simple analysis of the diversion path, and implications and lessons are derived. Through this, it is possible to anticipate new safeguards measures to be applied when decommissioning nuclear facilities in the Republic of Korea and review problems and considerations in advance.
        1 2 3 4 5