검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 492

        161.
        2022.05 구독 인증기관·개인회원 무료
        The permanent shutdown of NPPs (nuclear power plants) has been growing steadily around the world. Also, permanent shutdown of old NPPs has been determined following to Kori-1 and Wolsong-1 in the Korea. Among issues of decommissioning of NPPs, especially, the management of radioactive waste is the most sensitive issue. According to IAEA, a large volume of radioactive concrete waste would be generated from decommissioning of nuclear facilities. Also, EC (European commission) expected that about 500 million tons of concrete will be produced in Europe by 2060 due to decommissioning of NPPs. It is known that the radioactive concrete consists of surface contaminated concrete and activated concrete. So, if contaminants from radioactive concretes can be removed using specific technologies, volume reduction of concrete can be achieved. Since there is no experience of decommissioning of NPPs in Korea, it is important to analyze previous cases. In this study, decontamination of radioactive concrete is analyzed through previous studies. Decontamination technologies of concrete are composed of mechanical methods, chemical methods, and thermal methods. Mechanical methods are physical technologies separating contaminants from concrete using scabbling, milling, and vacuum cleaning. In chemical methods, contaminants were removed from concrete using an oxidizing agent/reducing agent, acid/base. Thermal methods are removal technologies using lasers, microwaves, and pulsed power discharge. Some methods still have practical use cases, and further research is needed on the issue of generation of secondary waste. Review on the experience of decontamination of concrete show that waste of concrete generated during decommissioning of NPPs are expected to have effect of large volume reduction. However, many studies are needed because secondary waste and decontamination cost is sensitive issue of concrete generated during decommissioning of NPPs. In order to successful decommissioning of NPPs in Korea, various research of decontamination of concrete are need
        162.
        2022.05 구독 인증기관·개인회원 무료
        Uranium-235, used for nuclear power generation, has brought radioactive waste. It could be released into the environment during reprocessing or recycling of the spent nuclear fuel. Among the radioactive waste nuclides, I-129 occurs problems due to its long half-life (1.57×107 y) with high mobility in the environment. Therefore, it should be captured and immobilized into a geological disposal system through a stable waste form. One of the methods to capture iodine in the off-gas treatment process is to use silver loaded zeolite filter. It converts radioactive iodine into AgI, one of the most stable iodine forms in the solid state. However, it is difficult to directly dispose of AgI itself in an underground repository because of its aqueous dissolution under reducing condition with Fe2+. It must be immobilized in the matrix materials to prevent release of iodine as a result of chemical reaction. Among the matrix glasses, silver tellurite glass has been proposed. In this study, additives including Al, Bi, Pb, V, Mo, and W were added into the silver tellurite glass. The thermal properties of each matrix for radioactive iodine immobilization were evaluated. The glasses were prepared by the melt-quenching method at 800°C for 1 h. Differential scanning calorimetry (DSC) was performed to evaluate the thermal properties of the glass samples. From the study, the glass transition temperature (Tg) was increased by adding additives such as V2O5, MoO3, or WO3 in the silver tellurite glass. The relative electro-static field (REF) values of V2O5, MoO3, and WO3 are about three times higher than that of the glass network former, TeO2. It could provide sufficient electro-static field (EF) to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. Therefore, the addition of V2O5, MoO3, or WO3 reinforced the glass network cohesion to increase the Tg of the glass. The addition of MoO3or WO3 in the silver tellurite glass increased Tg and crystallization temperature (Tc) with remaining the glass stability.
        163.
        2022.05 구독 인증기관·개인회원 무료
        In a recent preliminary inspection for disposal, the glass fiber waste (GFW), used as a pipe insulation, was judged as “pending evaluation” because some dust was found in drum opening tests. Therefore, additional inspection is required to ensure that the package corresponds with the acceptance criteria of the particulates. The dust was generated presumably due to GFW being used in a high-temperature environment for a long time, thus being easily degraded and crushed. For this reason, safety issues that may occur in the process of handling, transportation, and disposal are emerging. Therefore, in this study, a preliminary safety assessment of GFW disposal was performed, the exposure dose to the general public was derived, and compared with the dose limit. The evaluation was carried out in the following order: (1) evaluation of GFW radiation source term, (2) selection of accident scenario, (3) calculation of exposure dose, (4) comparison of evaluation results with dose limits, and confirmation of satisfaction. The average radioactivity of the GFW to be disposed of was used as the source term, and the main nuclides were identified as H-3, Fe-55, Co-60, Ni-63, and Pu-241. In general, the types of accidents that can occur at disposal facilities can be classified into falls, fires, collisions during transportation, off-site accidents, and nuclear criticality, and the accident scenarios are selected by analyzing and reviewing the probability of each accident. In this study, the accident analysis and scenarios presented in the safety assessment of the KORAD were reviewed, and the fire in the treatment facility, the fire in the storage facility, and the collision of the transport vehicle were selected as the evaluation scenarios. When an accident occurs, the radioactive material inside the container leaks out and diffuses into the atmosphere. In this evaluation, the internal and external exposure of the general public due to radioactive plume at the site boundary was evaluated and the dose conversion factors from ICRP-72 and FGR 12 were used. Based on the evaluation, general public was exposed to 0.004 mSv, 0.013 mSv, and 0.045 mSv, respectively, due to a fire at a treatment facility, at a storage facility, and in a transport vehicle. Most of the dose is due to internal exposure by Pu-241 nuclide, because the proportion of it in the waste is high, and when inhaled, the internal dose is high by emitting beta rays. It was confirmed that the result of dose was 0.4%, 1.3% and 4.5% of the annual dose limit, sufficiently satisfying the dose limit and safety.
        164.
        2022.05 구독 인증기관·개인회원 무료
        The feasibility study of synthesizing graphene quantum dots from spent resin, which is used in nuclear power plants to purify the liquid radioactive waste, was conducted. Owing to radiation safety and regulatory issues, an uncontaminated ion-exchange resin, IRN150 H/OH, prior to its use in a nuclear power plant, was used as the material of experiment on synthesis of graphene quantum dots. Since the major radionuclides in spent resin are treated by thermal decomposition, prior to conducting the experiment, carbonization of ion-exchange resin was performed. The experiment on synthesis of graphene quantum dots was conducted according to the general hydrothermal/solvothermal synthesis method as follows. The carbonized ion-exchange resin was added to a solution, which is a mixture of sulfuric acid and nitric acid in ratio of 3:1, and graphene quantum dots were synthesized at 115°C for 48 hours. After synthesizing, procedure, such as purifying, filtering, evaporating were conducted to remove residual acid from the graphene quantum dots. After freeze-drying which is the last procedure, the graphene quantum dots were obtained. The obtained graphene quantum dots were characterized using atomic force microscopy (AFM), Fourier-transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The AFM image demonstrates the topographic morphology of obtained graphene quantum dots, the heights of which range from 0.4 to 3 nm, corresponding to 1–4 graphene layers, and the step height is approximately 2–2.5 nm. Using FT-IR, the functional groups in obtained graphene quantum dots were detected. The stretching vibrations of hydroxyl group at 3,420 cm−1, carboxylic acid (C=O) at 1,751 cm−1, C-OH at 1,445 cm−1, and C-O at 1,054 cm−1. The identified functional groups of obtained graphene quantum dots matched the functional groups which are present if it is a graphene quantum dot. In Raman spectrum, the D and G peaks, which are the characteristics of graphene quantum dots, were detected at wavenumbers of 1,380 cm−1 and 1,580 cm−1, respectively. Thus, it was verified that the graphene quantum dots could be successfully synthesized from the ionexchange resin.
        165.
        2022.05 구독 인증기관·개인회원 무료
        In this introduction, test devices for radwaste characterization specimen was developed and utilized. In order to permanently dispose of solidified radwastes, not only radioactive characterization but also physical & chemical characterization shall be performed to assess compliance with the waste acceptance criteria. Waste acceptance criteria can be made up measurement of free standing water, compressive strength test, thermal cycling test, radiation resistance test, leaching test, immersion test. Approximately, the equipment for each test is sorted out five types. equipment for making characterization specimen, equipment for compressive strength test, equipment for thermal cycling test, equipment for radiation resistance test, equipment for Immersion test and leaching test. Equipment for making characterization specimen is operated the dry process. The equipment of two types: one (sampling device) that cores solidified radioactive waste in a drum, and the other (cutting machine) that properly cuts the coring samples. Sampling device is not used in industry, so it is specially manufactured, cutting machine is using ready-made products. In addition, devices for compressive strength test and thermal cycling test are using ready- made products. Facility for Radiation resistance test is located in Jeong-eup. For the efficient test, a table was manufactured in the columnar form like the specimen. Finally, devices for immersion test and leaching test are so transformed that contact all surfaces of the specimen with the liquid.
        166.
        2022.05 구독 인증기관·개인회원 무료
        During the operation or decommission of nuclear facilities, a large amount of dry active waste and cable waste with various shape and material is generated. Most of these wastes have almost no radioactive contamination and can be disposed of by incineration, landfill, recycling, etc. under clearance regulation. For clearance of radioactive waste, it is necessary to verify the characteristics of radiological contamination and prove that it meets the criteria for clearance regulation. According to the domestic clearance regulation, if it is difficult to measure radioactivity of wastes due to their surface condition using direct or indirect measurement methods, representative samples should be collected and analyzed for radioactivity. When sampling, it is desirable to collect samples of about 1 kg that can represent waste contamination per 200 kg or per 1 m2, and the homogeneity of the samples also should be demonstrated. However, in the case of dry active wastes, it is very difficult to prove the homogeneity of the samples because of surface shapes and conditions of the wastes. In particular, considering cable waste generated during the decommission, it is hardly capable to prove the representativeness of the sample, even though the inner shell of the covering material and the copper wire are almost uncontaminated. In this study, we show the development of a treatment system that makes it easy to prove the representativeness of samples when disposing of dry active waste or cable waste generated in nuclear facilities. The treatment device is designed in such a way that it has different storage unit and cutting unit suitable for the material characteristics of each waste type (soft, hard and cable), and therefore optimizes the efficiency of the shredding or cutting process. In addition, it is expected that the work efficiency in the radioactive treatment site with a narrow area can also be improved by providing a moving part on the device.
        167.
        2022.05 구독 인증기관·개인회원 무료
        The disposing method of the low-intermediate-level radioactive waste, near-surface disposal facilities are generally used. This disposal method refers to a method of constructing a concrete structure on the surface of the ground, putting radioactive waste in it, and covering it with an engineered barrier to isolate human life. Among these, engineered barriers mean covering multiple layers of heterogeneous materials such as sand, clay, and gravel. Engineering barriers have the purpose of delaying the release of radioactive materials into the natural environment as much as possible, and maintaining the isolation of radioactive waste and human life for as long as possible. In this study, the design and construction method of the facility to demonstrate the performance of the engineered barrier that isolates the surface disposal facility from nature was described. In addition, the design and construction method of monitoring technology that can monitor the safety of engineered barriers by measuring information such as moisture, temperature, and slope safety in real time was also explained.
        168.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.
        4,000원