Most commercial buildings among existing RC buildings in Korea have a multi-story wall-frame structure where RC shear wall is commonly used as its core at stairways or elevators. The members of the existing middle and low-rise wall-frame buildings are likely arranged in ordinary details considering building occupancy, and the importance and difficulty of member design. This is because there are few limitations, considerations, and financial burdens on the code for designing members with ordinary details. Compared with the intermediate or unique details, the ductility and overstrength are insufficient. Furthermore, the behavior of the member can be shear-dominated. Since shear failure in vertical members can cause a collapse of the entire structure, nonlinear characteristics such as shear strength and stiffness deterioration should be adequately reflected in the analysis model. With this background, an 8-story RC wall-frame building was designed as a building frame system with ordinary shear walls, and the effect of reflecting the shear failure mode of columns and walls on the collapse mechanism was investigated. As a result, the shear failure mode effect on the collapse mechanism was evident in walls, not columns. Consequently, it is recommended that the shear behavior characteristics of walls are explicitly considered in the analysis of wall-frame buildings with ordinary details.
This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.
This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.
This research presents that seismic performance of steel moment resisting frame building designed by past provision(UBC, Uniform Building Code) before and after retrofitted with BRB (Buckling-Restrained Brace) was evaluated using response modification factor(R-factor). In addition, the seismic performance of the retrofitted past building was compared with that specified in current provision. The past building considered two different connections: bilinear connection, which was used by structural engineer for building design, and brittle connection observed in past earthquakes. The nonlinear pushover analysis and time history analysis were performed for the analytical models considered in this study. The R-factor was calculated based on the analytical results. When comparing the R-factor of the current provision with the calculated R-factor, the results were different due to the hysteresis characteristics of the connection types. After retrofitted with BRBs, the past buildings with the bilinear connection were satisfied with the seismic performance of the current provision. However, the past buildings with the brittle connection was significantly different with the R-factor of the current provision.
본 연구는 높은 지진의 위험이 내재된 지역에 위치한 3층, 9층 그리고 20층 철골 모멘트저항골조에 대한 반응수정계수와 주기의 영향을 평가하기 위한 것이다. 각 구조물들은 IBC 2000과 KBC 2005에서 제시하고 있는 8의 반응수정계수로 설계되었고 건물에 기대되는 최소의 성능과 최대의 성능을 평가하기 위해서 상한범위와 하한범위의 설계가 고려되었다. 또한 반응수정계수에 대한 영향을 조사하기 위하여 4개의 다른 반응수정계수들이(9, 10, 11, 12) 각 구조물에 대하여 적용되었고 각 구조물의 고유주기 값 외의 4개의 다른 주기를 추가로 적용하여 구조물의 동적거동시 주기에 대한 영향을 조사하였다. 총 150개의 해석모델들은 50년 동안 2%의 초과확률(재현 주기 2500년)을 가진 20개의 지반운동에 대하여 평가되었다. 구조물의 성능평가를 위하여 정적 Pushover와 비선형 시간이력해석이 수행되었으며 구조물의 연성능력을 평가하기 위해서 변위연성요구가 고려되었다. 3층과 9층 구조물은 변위연성요구 값이 비교적 안정적인 거동을 보인 반면 20층 구조물은 동적 불안정성을 야기하는 요소에 의해 민감하게 나타나는 것으로 조사되었다.
본 논문은 유닛 모듈러를 구성하는 주구조체인 각형강관 기둥과 냉간성형 LEB C-형강 보가 볼트 접합된 접합부를 가진 모듈러 건물의 시공성을 평가하는 것이 연구의 목적이다. 모듈러 건축의 장점은 공사기간 단축, 경량성, 이동가능성 등으로 볼 수 있다. 반면에 유닛 또는 모듈의 운송비용이 공사비 절감 비용을 반감시킬 수 있고 많은 공장들이 외부 지역에 있으므로 이들을 도심지나 원하는 지역으로 이동하기 위해서는 비용이 추가된다. 그리고 유닛이나 모듈 설치에 크레인 등의 장비 사용으로 인해 시공비용이 증가될 수 있는 단점들이 존재한다. 본 연구에서는 앞서 연구한 모듈형상에 근거하여 해체조립이 용이한 모듈러 건축물의 시공사례를 통하여 공기, 비용 등 측면에서 기존 연구와 비교분석을 진행하여 모듈러 건물의 시공성을 평가하고자 한다.
본 연구에서는 전단벽-모멘트골조 시스템으로서 전단벽이 주로 횡력을 부담하는 철근콘크리트 건물을 대상으로 다양한 설치형식과 마찰력의 총량 및 분포를 갖는 마찰형 감쇠기의 제진보강 효과를 수치해석을 통해 비교 분석하였다. 감쇠기의 설치형식으로서 전단벽에 인접한 대각가새형, 벽체가 없는 골조를 보강하는 대각가새형 및 벽체 단부를 보강하는 수직경계요소형을 고려하였다. 하중기준 강화로 설계용보다 크게 증가한 지진하중에 대해 건물의 재료비선형성을 고려한 비선형시간이력해석을 수행하여 에너지소산, 횡하중 및 부재손상도 측면에서 마찰형 감쇠기의 제진성능을 비교 분석하였다. 기준마찰력의 30% 수준의 총마찰력을 갖는 벽체보강 대각가새형 설치형식이 전반적으로 가장 우수한 제진성능을 보이며,이 경우에 마찰력 배분방식은 중요하지 않았다. 또한 일부층에 집중설치함으로써 전층설치에 약간 못미치는 제진성능을 얻을 수 있었다.
본 연구에서는 확률과 신뢰성을 바탕으로 개발된 FEMA-355F의 내진성능 평가기법을 적용하여 철근 콘크리트 모멘트골조 건물의 내진성능을 평가하였다. 철골 구조물을 대상으로 개발된 FEMA의 성능평가 방식을 다른 구조 시스템에 적용할 때 각 시스템에 적합한 성능값을 결정해야하며, 요구값과 성능값 계산 시 수반되는 불확실성을 반영하는 계수들을 새로이 구해야 한다. 이를 수행하기 위해 예제 건물을 IBC 2003에 따라 설계한 후, 성능평가에 필요한 변수들을 결정하기 위해 건물의 위치에 적합한 지반운동을 이용하여 비탄성 동적 해석을 수행하였다. 해석결과에 따르면 계산된 성능값의 분포는 요구값에 비해 상대적으로 작았으며, 이 결과는 본 연구에서 결정된 성능값이 합리적임을 나타낸다. 구해진 신뢰도는 부분 및 전체 붕괴 모두에 대해 목표치를 초과하였으므로 예제 건물은 목표 성능을 만족하는 것으로 나타났다.
노스리지 지진에 의해 손상을 받은4층 철근콘크리트조 골조건물을 대상으로 선형가진기 및 대용량의 편심가진기를 이용한 강제진동실험과 상시미진동 측정을 실시하였다. 미진동 가속도데이터 및 선형가진기에 의한 백색잡음 실험시의 가속도데이터로부터 구조물식별을 수행하여 7차모드까지의 고유진동수 및 모드감쇠비를 얻었다. 두대의 대용량 편심가진기를 사용하여 얻은 큰 진폭의 조화 진동하에서는 가속도데이터를 사용하여 각 방향 1차모드를 식별하였으며 변위계와 변형게이지를 이용하여 층간변위각, 기둥과 슬래브와 같은 구조부재의 곡률분포를 측정하였다. 각 경우 고유진동수는 진동의 크기가 클수록 낮아졌다. 즉, 편심가진기가력시 고유진동수는 상시미진동시에 비해 70{\sim}75%, 선형가진시가력시에 비해 92{\sim}93% 정도로 낮게 나타났다. 이러한 진동수의 감소폭은 지진에 의해 큰 손상을 받았던 건물의 남북방향에서 크게 나타났다.
건축 구조물의 내진 설계는 탄성 정적 방법에 기초하고 있으나, 강진시 구조물의 실제 거동은 비탄성 동적이기 때문에 설계 규준의 적합성을 판단하기 위해서는 비탄성 동적 해석이 요구된다. 본 논문에서는 철근 콘크리트 특수 모멘트 저항 골조 건물을 선택하여 IBC 2003에 따라 설계한 후, 선택된 부재들의 최대 소성 회전, 소산 에너지를 구하여, 건물의 비탄성 거동이 규준에서 의도한 거동을 보이는 지를 검토함과 동시에 층간변위률 요구값을 구하여 설계 한도를 만족하는 지를 조사하였다. 더불어 비횡력 저항 시스템인 내부 모멘트 저항 골조의 해석시 포함 여부의 영향도 함께 조사하였다. 해석 결과 IBC 2003에 의해 설계된 건물은 규준이 의도한 비탄성 거동을 보여주었으며 층간변위률 또한 설계한도를 만족하였다. 그리고, 내부 모멘트 저항 골조는 지진 해석 결과에 중요한 영향을 미치므로 해석 모델에 반드시 포함되어야 함을 알수 있었다.
성능설계법에서 다층 건축물의 내진성능을 평가하기 위해서는 다자유도계를 등가 1자유도계로 변환할 필요가 있다. 본 논문은 다자유도계를 등가 1자유도계로 변환하여 다층 골조구조물의 층간변위 응답을 추정하는 방법을 제안한다. 본 연구의 목적은 다층 골조구조물과 등가 1자유도계의 시간이력해석을 수행하여 등가 1자유도계 변환 방법의 타당성을 확인하는 것이다. 다층 골조구조물의 시간이력해석에 의한 층간변위 응답과 등가 1자유도계에 의해 추정된 층간변위 응답을 비교하여, 등가 1자유도계에 의한 층간변위 응답에 대한 추정 방법의 타당성을 확인한다. 본 연구에서 얻어진 결과는 다음과 같다. 시간이력해석을 통하여 다자유도계를 등가 1자유도계로 변환하는 방법의 타당성을 확인할 수 있었다. 다층 골조구조물의 층간변위 응답은 비탄성 1차 모드를 이용한 등가 1자유도계의 변위응답으로부터 보다 정확히 추정할 수 있었다.
본 연구에서는 지진하중에 의하여 철골 모멘트저항골조(MRF)와 좌굴이 방지된 가새골조(BRBF) 그리고 힌지로 접합된 좌굴이 방지된 가새골조(HBRBF)에서 발생하는 층별 이력에너지의 분포에 대하여 고찰하였다. 예제 구조물의 에너지 요구량을 산정하기 위하여 다른 지반조건에서 계측된 60개의 지진기록을 사용하였다. 해석결과에 따르면 MRF와 BRBF에서의 이력에너지는 밑면에서 최대가 되고 상부층으로 갈수록 점진적으로 감소하여, 상부층에서는 부재의 이력거동이 거의 발생하지 않았다. 그러나 HBRBF에서의 층별 이력에너지는 구조물의 높이에 따라 상대적으로 균등하게 분포하였으며, 이러한 경우 손상이 한 층에 집중적으로 발생하지 않아 다른 시스템에 비하여 보다 바람직하다고 할 수 있다. 연암 지반, 연약한 토사, 단층 근처의 지반 조건에 따른 에너지의 분포형태는 거의 동일하게 나타났다.
In equivalent static nonlinear analysis and in energy-based design, the structures are generally transforrned into an equivalent SDOF system. In this study the seismic energy demands in multi story structures, such as three-, eight-, and twenty-story steel moment-resisting frames (MRF), buckling restrained braced frames (BRBF) and a damage tolerant buckIing restrained braced frame (DTBRBF), are compared with those of equivalent single degree of freedom (ESDOF) systems. Sixty earthquake ground motions recorded in different soil conditions, which are soft rock, soft soil, and near fault, were used to compute the input and hysteretic energy demands in model structures. In case the modal mass coefficient is less than 0.8, the effects of higher modes are considered in the process of converting into ESDOF. According to the analysis results, the hysteretic and input energies obtained from three story and eight story MRF and DTBF agreed well with the results from analysis of equivalent SDOF systems. However in the twenty' story BRBF the results from ESDOF underestimated those obtained from the original structures
본 연구에서는 능력스펙트럼법을 이용하여 성능목표를 만족하기 위하여 필요한 점성 감쇠기? 양을 간단하고 직접적인 방법으로 산정하는 방법에 관하여 연구하였다. 먼저 능력스펙트럼법을 이용하여 구조물의 비탄성 응답을 구하고 구조물의응답과 목표변위의 차이를 이용하여 필요한 유효감쇠비를 구하였다. 그리고 이러한 유효감쇠비를 이용하여 필요한 점성감쇠기의 양을 선정하였다. 본 연구에서 제안한 방법의 타당성을 검증하기 위해 10층의 철골조 건물에 세 가지 유형의 층지진하중을 가하고 제안된 절차에 따라 필요한 감쇠기의 양을 구하였다. 해석결과에 따르면 제안된 방법에 의하여 설계된 점성 감쇠기를 해석 모델에 설치하고 시간이력 해석을 수행한 결과 최대응답은 목표변위와 잘 일치함을 발견하였다.
본 연구에서는 철골조 건물의 내진 보강 방법으로 점탄성 감쇠기의 적용과 효과에 대하여 성능에 기초한 내진 설계의 관점에서 연구하였다. 먼저 단자유도계 구조물을 대상으로 입력된 지진에너지의 소산에 대한 감쇠기의 효과에 대하여 연구하였다. 설계하중으로 중력하중을 적용한 5층 건물과 중력하중과 풍하중을 적용한 10층과 20층 건물에 대하여 해석을 수행하였다. 비선형 시간이력해석을 수행하기 위하여 성능에 기초한 내진설계기준(안)에 제시된 표준 설계응답스펙트럼을 각 지반종류와 성능목표에 대하여 구성하고, 이를 바탕으로 인공지진을 생성하였다. 해석결과에 따르면 층간변위를 성능기준으로 적용하였을 때 모든 모델이 연약지반(기능수행 성능목표)을 제외한 대부분의 지반조건에서 기준안에 제시된 성능목표를 만족하였다. 또한 적당한 위치에 점탄성 감쇠기를 설치함으로써 내진성능을 향상시키고 구조물이 탄성적으로 거동하도록 유도함을 보였다.
최근 국내에서 많이 건설되어지고 있는 주상복합 건축물은 하부의 골조형식과 상부의 벽식 구조가 결합된 구조형식을 가지고 있다 따라서 지진 발생시 동일한 형식을 가진 건축물과는 상이하고 복잡한 반응을 보이게 된다 이러한 건축물의 등가정적 해석시 국내 규준에서는 기타구조물로 분류하여 3.5 의 반응수정계수를 적용하고 있다 그러나 이 계수는 검증되어지지 않는 상태로 사용되어지고 있으므로 상당한 위험성을 내포하고 있다 본 연구에서는 단순화한 주상복합 건물의 해석 및 실제의 건물에 대한 3차원 비선형 해석을 통하여 반응수정계수를 유도하였다 유도된 반응수정계수는 ATC 기준과 우리나라 기준의 차이를 고려한 보정을 수행하였다.