분화장미의 생장에 미치는 배양액 농도와 AMF(Arbuscular Mycorrhizal Fungi) 접종 및 접종시기의 영향을 구명하기 위하여 수행하였다. 연구목적을 달성하기 위하여 저면관수(ebb and flow) 시스템에서 일본 원예시험장 배양액을 6농도(0.125, 0.25, 0.5, 1, 2, 4배)로 처리하고, AMF를 무접종, 삽목 시 접종 및 정식 시 접종 처리하여 식물을 재배하였다. 배양액 농도가 높아짐에 따라 배지 침출액의 EC가 높아졌으며, AMF무접종 처리구와 삽목 시 AMF접종처리구의 배지 침출액 EC변화는 유사하였으나 정식 시 AMF접종처리구의 EC는 상대적으로 낮았다. 배지 침출액의 pH변화는 AMF무접종처리구와 삽목 시 AMF접종처리구가 서로 비슷한 변화를 나타내었으나 정식 시 AMF접종처리구의 경우 pH변화가 크지 않고, 배앙액농도가 높을수록 낮아졌다. 배양액의 농도가 높을수록 초장, 건물중과 엽면적이 증가하는 결과를 보였으며, AMF접종처리에 의해 영양생장 및 생식생장(개화단축 및 개화수)의 증가를 보였으며, 특히 삽목 시 AMF접종처리보다 정식 시 AMF접종처리가 우수하였다. 엽록소 함량에 있어서도 정식 시 AMF접종처리구에서 증가하는 경향을 나타내었다. 배양액농도의 증가에 의해 N, P, K, Na 및 Mn의 엽중함량이 증가되었으며, AMF접종에 의해서도 증가되었으며, 정식 시 AMF접종처리구가 가장 우수하였다.
Available phosphorus(P2O5) in conventionally cultivated soil was more abundant in two fold than that of organically cultivated soil. Relative density of Arbuscular Mycorrhizal Fungi (AMF) was higher in organically cultivated soil, That of welsh onion cultivated soil was the highest, that of strawberry was followed and then that of pepper, respectively. Relative density of AMF was inversely proportioned to available soil phosphorus. Phosphorus content of crop and relative density of AMF were more abundant in organically cultivated crop or soil. However available soil phosphorus content was much in conventionally cultivated soil. The phosphorus contents between soil and crop were negatively correlated. The phosphorus content of crop was increased as the relative density of AMF increased. Relative density of AMF in the organically cultivated soil and phosphorus content of the crop with organic cultivation were higher than those of conventionally cultivated.
This study was conducted to examine the distribution of arbuscular mycorrhizal fungi (AMF) in the soil grown tomato plants in Damyang districts. We collected twenty one soil samples from the rhizosphere of tomato plants which were grown under structure. Number of spores/g in the soil sized over 500㎛, 355~500㎛, 251~354㎛, 107~250㎛ and 45~106㎛ were 0.01, 0.02, 0.09, 0.9, and 2.0. Total number of spores/g in the fresh soil were 3.02. Mycorrhizal root infection by vesicles, hyphae and arbuscules were 18.0%, 6.0% and 2.0%. To identify the genus of arbuscular mycorrhizal fungi, isolated mycorrhizal spores from the soil grown tomato plants were inoculated into the host plant of sudangrass and mass propagated for 4 months. As a result of identification, mycorrhizal spores were identified as Glomus sp., Gigaspora sp. and Acaulospora sp.
This study was conducted to investigate into the marketing states of ‘Hangalku (Cirsium japonicum DC.)’ for the soup stock of wild vegetables with Jangheung as the central districts, and to clarify the distribution of arbuscular mycorrhizal fungi in the native soil and roots of Cirsium japonicum DC. Hangalku for wild vegetables was used for the soup stock with soft leaves and roots. Total fresh and dry weights of leaves per 1,000won were 226.0g and 24.6g. And total root fresh and dry weights by 1,000won were 175.6g and 37.5g. Leaf fresh and dry weights of Hangalku per plant sold for wild vegetables were 9.1g and 0.9g, and number of leaves was 10.8. Root fresh and dry weights of Hangalku per plant were 19.2g and 4.1g. Thirty five soil samples were collected from the native soils grown Cirsium japonicum DC., and mycorrhizal spores in soils were separated using wet-sieving methods. Number of mycorrhizal spores per 30g fresh soil sized over 500㎛, 355~500㎛, 251~354㎛, 107~250㎛ and 45~106㎛ were 0.6, 2.1, 6.0, 55.3 and 126, etc. Total number of mycorrhizal spores per 30g fresh soil were 190. Root infection by vesicles, hyphae and arbuscules were 13%, 4% and 3%, respectively. As a result of identification, mass propagated mycorrhizal spores by the host plant of sudangrass were Glomus sp., Gigaspora sp., and Acaulospora sp., and so on.
This study was conducted to investigate into the distribution of arbuscular mycorrhizal fungi (AMF) in the greenhouse soils grown strawberry plants in Damyang and Jangheung districts. Twenty three soil samples were collected from strawberry plants under greenhouse conditions, and mycorrhizal spores in soils were separated using wet-sieving methods. Number of mycorrhizal spores per 30g fresh soil sized over 500㎛, 355~500㎛, 251~354㎛, 107~250㎛ and 45~106㎛ were 0.3, 1.0, 4.2, 50.4 and 119, etc. Total number of spores per 30g fresh soil were 173.9. Root infection by vesicles and hyphae were 25% and 4%, respectively. Mycorrhizal root infection by arbuscules was not shown in strawberry roots. Isolated mycorrhizal spores were inoculated into the host plant of sudangrass to identify the genus of arbuscular mycorrhizal fungi, and propagated for 4 months. As a result of identification, mass propagated mycorrhizal spores were Glomus sp., Gigaspora sp., and Acaulospora sp., and so on.