A-B Process는 A 단계에서 에너지 회수능력을 획기적으로 향상시키고, B 단계에서는 에너지 소비를 절감할 수 있는 기술로 구성되는 것을 특징으로 한다. A-B Process는 다양한 단위기술로 구성이 가능하며, 향후 에너지 생산 하수처리 시설을 위해서 필수적이라고 할 수 있다. 대표적으로 A단계는 고속활성슬러지 공법 또는 혐기처리로 구성하여 일반 활성슬러지공법과 대비 높은 COD Capture가 가능하며, A단계에서 제거되지 않은 일부 유기물과 질소는 B단계에서 단축질산화/탈질공정 또는 부분질산화/아나목스 공정으로 에너지를 절감한 형태로 효율적인 제거가 가능하다. 본 연구는 A단계에서 혐기성 세라믹 분리막 생물반응조 공정을 도입하여 하수처리로부터 90% COD Capture가 가능하였다.
In this study, rainfall characteristics with stationary and non-stationary perspectives were analyzed using generalized extreme value (GEV) distribution and Gumbel distribution models with rainfall data collected in major cities of Korea to reevaluate the return period of sewer flooding in those cities. As a result, the probable rainfall for GEV and Gumbel distribution in non-stationary state both increased with time(t), compared to the stationary probable rainfall. Considering the reliability of ξ1, a variable reflecting the increase of storm events due to climate change, the reliability of the rainfall duration for Seoul, Daegu, and Gwangju in the GEV distribution was over 90%, indicating that the probability of rainfall increase was high. As for the Gumbel distribution, Wonju, Daegu, and Gwangju showed the higher reliability while Daejeon showed the lower reliability than the other cities. In addition, application of the maximum annual rainfall change rate (ξ1·t) to the location parameter made possible the prediction of return period by time, therefore leading to the evaluation of design recurrence interval.
This study examined a feasibility of coagulation as post-treatment to remove sulfide and phosphorus for the effluent of anaerobic fluidized bed reactor (AFBR) treating domestic wastewater. Removal efficiencies of sulfide, phosphorus and COD by coagulation were not affected by pH in the range of 5.9 to 7.2. Alkalinity requirement could be estimated by the amount of Fe3+ to form Fe(OH)3(S) and to remove sulfide and phosphorus. At coagulant aid dosage of 2 mg/L, anionic polymer showed best results regarding size and settleability of flocs. Sulfide removal for the AFBR effluent at the Fe3+/S2- ratio of 0.64, close to the theoretical value of 0.67 found with a synthetic wastewater, was only 75.2%. One of the reasons for this low sulfide removal is that the AFBR effluent contains, phosphorus, hydroxide and bicarbonate which can react with Fe3+ competitively. Concentrations of sulfide and phosphorous reduced to below 0.1 and 0.5 mg/L, respectively, at the Fe3+/S2- ratio of 2.0. Average effluent COD of 80 mg/L, mostly soluble COD, was obtained at the dosage 50 mg Fe3+/L (Fe3+/S2- ratio of 2.0) with corresponding COD removal of 55%. For better removal of COD, soluble COD removal at the AFBR should be enhanced. Coagulation with Fe3+ removed sulfide, phosphorus and COD simultaneously in the AFBR effluent, and thus could be an alternative process for the conventional wastewater treatment processes where relatively high quality effluent is not required.
The dewatering characteristics of the sewage sludge was investigated through the experimental observations and model simulations. The activated sludge and the anaerobically digested sludge were examined for the dewaterability evaluation within the pressure range of $0{\sim}10^6N/m^2$. Modified Buchner funnel test and compression test by the consolidometer were conducted to evaluate average specific resistance, porosity, and moisture percentage of filter cake. Shirato's technique of compression-permeability test was followed for the pressure range lower than about $10^2N/m^2$. The flocculation effects on sludge dewatering was also examined for ferric chloride and polymeric flocculant. The application of hydrated lime which can be used for flue-gas desulfurization showed improved moisture percentage, and was thought to have positive feasibility in combined system of sludge dewatering and incineration. Determined characteristic constants were applied to Tiller's cake filtration model to simulate liquid pressure distribution and porosity distribution in cake. Model simulations showed a sharp drop of the porosity close to the cake-medium interface for the highly compressible material such as the activated sludge and the anaerobically digested sludge.
Laboratory experiments were conducted to investigate the effect of digestion temperature on the settleability and dewaterability of anaerobically digested sludge. The digesters were operated at a hydraulic retention time of 20 days with a loading rate of 0.63~0.66kg volatile solids per cubic meter per day at the temperature of $35^{\circ}C$ and $55^{\circ}C$. A mixed primary and secondary municipal sludge was used as a feed. The interface height of the sludge during settling test was recorded to identify settleability. As a measure of dewaterability of the sludge, specific resistance and capillary suction time were also measured with and without chemical conditioning. Higher digestion efficiency was obtained at $55^{\circ}C$ than $35^{\circ}C$. However, the settleability and dewaterability of the sludge at $35^{\circ}C$ were quite higher than those of the sludge digested at $55^{\circ}C$. The optimum dosages of ferric chloride for sludge conditioning were 0.4% and 0.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. The filtrate COD of the sludge digested at $55^{\circ}C$ was higher than at $35^{\circ}C$, which means that poor dewaterability of the sludge result in high filtrate COD.
미국 캘리포니아주 Orange County에 위치한 Water Factory 21(WF-21)은 생물학적 처리공정을 거친 도시하수를 재생하여, 이 재생수를 지하수지층으로 유입되는 해수의 침투를 막기 위한 Reinjection System에 이용하고 있다. 장치 구성 공정은 Lime처리, Air Stripping, 사여과, 활성탄처리, 역삼투막 및 염소처리 등으로 이루어지며, 이에 대한 각 처리공정의 효율성에 대하여 실험을 실시하였다. 3년간의 장기간에 걸친 실험결과로부터, 도시하수에 대한 RO Membrane 처리수는 음료 수질 기준에 적합한 고수질의 물을 생성할 수 있음을 입증했다. Pilot Plant 실험에선 Lime Clarifier만으로 전처리를 실시하여 성공적인 결과를 얻었으며, 또한 저압 (250 psi)이 적용된 새로운 Membrane을 사용하여 에너지 절약을 통한 비용 절감 효과에 대한 실험도 상당한 가능성을 보여주었다.
The purpose of this study was to confirm the applicability of aerobic granular sludge (AGS) in the advanced sewage treatment process. Simulated influent was used in the operation of a laboratory scale reactor. The operation time of one cycle was 4 h and the reactor was operated for six cycles per day. The volume exchange ratio was 50%. The influent was injected in divisions of 25% to increase the removal efficiency of nitrogen in every cycle. As a result, the removal efficiencies of CODCr and TN in this reactor were 98.2% and 76.7% respectively. During the operation period, the AGS/MLVSS concentration ratio increased from 70.0% to 86.7%, and the average SVI30 was 67 mL/g. The SNR and SDNR were 0.073 0.161 kg NH4 +-N/kg MLVSS/day and 0.071 0.196 kg NO3 --N/kg MLVSS/day respectively. These values were higher or similar to those reported in other studies. The operation time of the process using AGS is shorter than that of the conventional activated sludge process. Hence, this process can replace the activated sludge process.
도시유역에서 발생한 유출은 지표면뿐만 아니라 하수관망을 통해 배수되며, 도시침수 모의 수행시 하수관망을 수문학적 배수 시스템의 한 구성요로서 고려하는 것은 매우 중요하다. 그러나 도시 침수 모의를 수행하는 대부분의 연구자들이 적절한 기준에 준하지 않고 직관적으로 하수관망을 단순화시켜 모의를 수행하는 실정이다. 따라서 본 연구에서는 1D-2D 결합 도시침수 해석 모형을 이용하여 수지상 구조에 구분법에 기반하여 단순화 된 하수관망의 도시침수 해석 결과에 미치는 영향을 분석하였다. 하수관망 해석을 위한 1차원 모델은 Lee et al. (2017)에 의해 소개된 모형으로서 지표면과 하수관망 사이의 유입과 역류를 동시에 모의할 수 있고, 2차원 지표면 모델은 불규칙 삼각망을 이용하여 지표수 흐름을 모의하며 1차원 하수관망 해석모형과 연계되어 도시침수를 모의할 수 있다. 하수관망은 수지상 구조 구분법에 기반하여 2차, 3차 그리고 단순화 하지 않은 경우로 구분할 수 있으며, 구분된 각 하수관망은 서울시 사당역 인근에 많은 침수 피해를 발생시킨 2011년 7월 27일 강우 사상에 적용하여 제안된 방법의 적용성을 평가하였다. 모든 케이스에 대하여 침수면적, 지표면에서 하수관망으로의 유입 유량, 하수관망에서 지표면으로의 역류 유량 등을 비교하였으며, 마지막으로 하수관망 단순화를 위한 적절한 기준 제시에 대한 논의를 수행하였다.
In this research, we tried to find a solution for problem of urban sewage treatment with coal fly ash and gypsum as industrial wastes. Furthermore, we examine the feasibility of reusing coal fly ash and gypsum which increasing amount of industrial wastes as urban sewage treatment materials and the concern for urban sewage coagulation and adsorption mechanism. The result shows that when 800 mg/L of coal fly ash sintered at 700oC are injected into urban sewage, optimum removal efficiency of CODCr is 87.3%, indicating more 5% improvement than of treating with not sintered condition. The study finds that when 1000 mg/L of gypsum are injected into urban sewage without sintering, optimum removal efficiency of CODCr and turbidity indicate 87.4% and 93.7% respectively.
The objectives of this study have been carried out to investigate the solubilization of municipal sewage sludge by single and dual frequency ultrasonic pretreatment, and the methane production characteristics of pretreated sewage sludge by specific methanogenic activity test for sewage sludge reduction. The waste activated sludge was collected from thickened tank of Suyoung sewage treatment plant in Busan city, and its concentration was adjusted to 1.0% total solids. Ultrasonic frequency was varied 15, 20, 15+20 kHz, and acoustic density was used a maximum 176W/L. The dual frequency ultrasonic pretreatment was found to be more effective than single frequency ultrasonic in the solubilization rate and methane production. The SCODCr/TCODCr rate were 15.2%, 13.9%, 17.0% with single frequency of 15 kHz, 20 kHz, dual frequency of 15+20 kHz, respectively. The application of dual frequency ultrasound for sewage sludge pretreatment can be interest for sewage treatment plants having problems in sludge treatment and disposal.