This study analyzed displacement records of Sungnyemun Gate's primary structural members, such as columns, beams, and hip rafters, over approximately ten years from 2013 to 2023. Through this, we attempted to examine the behavior of wooden architectural heritage in detail and infer the factors influencing structural change through the deformation revealed during the displacement accumulation process. As a result of the analysis, it was quantitatively confirmed that the prominent structural members of the Sungnyemun gate, including the columns, beams, and hip rafters, continued to move and that the accumulated displacements from the movement led to the structure's deformation. It was also confirmed that member displacements accumulate in a specific direction. In the case of the Sungnyemun gate, even after the structure was stabilized, the columns were tilting inward toward the building, and the ends of the hip rafters and the centers of the beams were moving downward continuously. Furthermore, the behavior of wooden architectural heritage, in which damage accumulates as it undergoes repeated transformation and recovery according to seasonal changes, was also revealed in detail. The deformation of the Sungnyemun gate members shows a common pattern of relatively large behavior in the summer. However, seasonal deformation did not appear the same in all members. Even the same member has an uneven drying speed due to differences in the amount of sunlight received depending on the location, leading to uneven distribution of deformation. This study, while acknowledging its limitations, is significant in that it attempts to examine the behavior of our wooden architectural heritage in detail and discuss its characteristics and influencing factors based on quantitative results of long-term measurements.
Quantitative analysis of termites damage is important in terms of conservation and maintenance of wooden cultural heritage buildings, because termites makes cavities and decreases the section area of wooden structural members. The purpose of this study is to forecast the range and spread of termites damage in the wooden structural members by using ultrasonic pulse velocity method.
Ultrasonic pulse velocity has been used as one of non-destructive test to analysis the internal defect by using difference velocity between medium material and cavity. This method would be effective to analysis termites damages. From the result of the ultrasonic velocity test, the loss rate of area effected by termites damage had a strong correlation with ultrasonic velocity. And it is possible to predict the loss rate of area from by termites damage by using regression equation in the case of structural member of fine tree.