Nano-oxide dispersion–strengthened (ODS) superalloys have attracted attention because of their outstanding mechanical reinforcement mechanism. Dispersed oxides increase the material’s strength by preventing grain growth and recrystallization, as well as increasing creep resistance. In this research, atomic layer deposition (ALD) was applied to synthesize an ODS alloy. It is useful to coat conformal thin films even on complex matrix shapes, such as nanorods or powders. We coated an Nb-Si–based superalloy with TiO2 thin film by using rotary-reactor type thermal ALD. TiO2 was grown by controlling the deposition recipe, reactor temperature, N2 flow rate, and rotor speed. We could confirm the formation of uniform TiO2 film on the surface of the superalloy. This process was successfully applied to the synthesis of an ODS alloy, which could be a new field of ALD applications.
해당 연구는 산업 폐수에서 염료를 효율적으로 제거하기 위한 고급 박막 나노복합체(TFN) 기반 나노여과막을 개 발하여 효과적인 폐수 처리 방법을 제시합니다. 최근 연구의 동향을 보면, 나노카본, 실리카 나노스피어, 금속-유기 프레임워 크(MOF) 및 MoS2와 같은 혁신적인 재료를 포함하는 TFN 막의 제조에 중점을 둡니다. 주요 목표는 염료 제거 효율을 향상 시키고 오염 방지 특성을 개선하며 염료/염 분리에 대한 높은 선택성을 유지하는 것입니다. 이 논문은 넓은 표면적, 기계적 견고성 및 특정 오염 물질 상호 작용 능력을 포함하여 이러한 나노 재료의 뚜렷한 이점을 활용하여 현재 나노여과 기술의 제 한을 극복하고 물 처리 문제에 대한 지속 가능한 솔루션을 제공하는 것을 목표로 합니다.
In this study, we undertook detailed experiments to increase hydrogen production efficiency by optimizing the thickness of titanium dioxide (TiO2) thin films. TiO2 films were deposited on p-type silicon (Si) wafers using atomic layer deposition (ALD) technology. The main goal was to identify the optimal thickness of TiO2 film that would maximize hydrogen production efficiency while maintaining stable operating conditions. The photoelectrochemical (PEC) properties of the TiO2 films of different thicknesses were evaluated using open circuit potential (OCP) and linear sweep voltammetry (LSV) analysis. These techniques play a pivotal role in evaluating the electrochemical behavior and photoactivity of semiconductor materials in PEC systems. Our results showed photovoltage tended to improve with increasing thickness of TiO2 deposition. However, this improvement was observed to plateau and eventually decline when the thickness exceeded 1.5 nm, showing a correlation between charge transfer efficiency and tunneling. On the other hand, LSV analysis showed bare Si had the greatest efficiency, and that the deposition of TiO2 caused a positive change in the formation of photovoltage, but was not optimal. We show that oxide tunneling-capable TiO2 film thicknesses of 1~2 nm have the potential to improve the efficiency of PEC hydrogen production systems. This study not only reveals the complex relationship between film thickness and PEC performance, but also enabled greater efficiency and set a benchmark for future research aimed at developing sustainable hydrogen production technologies.
As the limitations of Moore’s Law become evident, there has been growing interest in advanced packaging technologies. Among various 3D packaging techniques, Cu-SiO2 hybrid bonding has gained attention in heterogeneous devices. However, certain issues, such as its high-temperature processing conditions and copper oxidation, can affect electrical properties and mechanical reliability. Therefore, we studied depositing only a heterometal on top of the Cu in Cu-SiO2 composite substrates to prevent copper surface oxidation and to lower bonding process temperature. The heterometal needs to be deposited as an ultra-thin layer of less than 10 nm, for copper diffusion. We established the process conditions for depositing a Co film using a Co(EtCp)2 precursor and utilizing plasma-enhanced atomic layer deposition (PEALD), which allows for precise atomic level thickness control. In addition, we attempted to use a growth inhibitor by growing a self-assembled monolayer (SAM) material, octadecyltrichlorosilane (ODTS), on a SiO2 substrate to selectively suppress the growth of Co film. We compared the growth behavior of the Co film under various PEALD process conditions and examined their selectivity based on the ODTS growth time.
ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film’s optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 °C. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.
As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 °C The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.
Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 °C. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.
Tb3+-doped CaNb2O6 (CaNb2O6:Tb3+) thin films were deposited on quartz substrates at a growth temperature of 300 °C using radio-frequency magnetron sputtering. The deposited thin films were annealed at several annealing temperatures for 20 min and characterized for their structural, morphological, and luminescent properties. The experimental results showed that the annealing temperature had a significant effect on the properties of the CaNb2O6:Tb3+ thin films. The crystalline structure of the as-grown CaNb2O6:Tb3+ thin films transformed from amorphous to crystalline after annealing at temperatures greater than or equal to 700 °C. The emission spectra of the thin films under excitation at 251 nm exhibited a dominant emission band at 546 nm arising from the 5D4 → 7F5 magnetic dipole transition of Tb3+ and three weak emission bands at 489, 586, and 620 nm, respectively. The intensity of the 5D4 → 7F5 (546 nm) magnetic dipole transition was greater than that of the 5D4 → 7F6 (489 nm) electrical dipole transition, indicating that the Tb3+ ions in the host crystal were located at sites with inversion symmetry. The average transmittance at wavelengths of 370~1,100 nm decreased from 86.8 % at 700 °C to 80.5 % at an annealing temperature of 1,000 °C, and a red shift was observed in the bandgap energy with increasing annealing temperature. These results suggest that the annealing temperature plays a crucial role in developing green light-emitting CaNb2O6:Tb3+ thin films for application in electroluminescent displays.
ITO 투명 전극 필름은 디스플레이, 전기 자동차 등 산업 전 범위에서 널리 사용되는 전자 재료이다. 본 연구에서는 이러한 indium tin oxide (ITO) 필름의 열성형 안정성을 향상시키기 위하여 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 전도성 고분자 코팅 용액 조성을 결정하였다. 1000 S/cm의 고 전도성을 보이는 PEDOT:PSS 용액에 끓는점이 각기 다른 4가지 종류의 용매를 희석하였고, 코팅 전 후 면저항 변화를 분석하였다. 또한 380~800 nm 영역의 광 투과율 분 석 및 Raman 스펙트럼 분석을 통하여 PEDOT:PSS 박막이 코팅된 ITO 투명 전극의 전기적 특성 결정 메커니즘을 규명하였 다. 230°C 열성형 공정 결과 ITO 필름은 113% 연신 상태에서 이미 전기 전도성을 읽었지만, ethylene glycol을 희석 용매로 사용하여 얻어진 전도성 고분자 박막이 적용된 ITO 필름은 126% 고 연신 상태에서도 초기 60 Ω/sq 면저항을 246 Ω/sq로 유지하는 우수한 전기 전도성을 보였다.
해양산업시설에서는 많은 종류의 유해물질의 배출 가능성이 존재하기 때문에 이에 대한 체계적인 대응체계가 필요하다. 그 중 연속자동 측정이 가능하면서 ppb 수준의 낮은 검출하한 (limit of detection:LOD)를 갖는 센서 구현은 매우 중요하다. 이를 위해 본 연구에서 는 활성탄소(carbon black)와 Indium tin oxide (ITO) 나노입자를 혼합한 film의 표면저항의 변화를 이용한 고성능 센서 제안 및 구현을 위해 성능인자를 최적화하였다. 센서 구조는 접촉 면적과 전극 간격을 최적화하였다. 접촉 면적이 증가하면 감도, LOD 성능이 향상되었으며 60 mm2에서 최적화되었다. 또한, 전극 간격은 접촉 면적을 일정하게 유지한 상태에서 변화시켰으며 센서 응답은 전극 간격이 감소함에 따라 증가하는 것을 확인하였다. 마지막으로 센서 표면에서의 유해물질의 잔류시간 증가를 위해 화학흡착제를 적용하였다. 화학흡착제는 유해 물질을 선택적으로 흡수할 수 있는 polyester계를 선택하였다. 그 결과 농도가 증가함에 따라 응답이 선형적으로 증가하여 센서로 활용이 가능한 것을 확인하였다. 이러한 3가지의 방법을 통해 센서를 제작하였을 때 액상 유해물질을 기존 센서의 LOD(89.9 ppb)와 비교 10~40 ppb 정도의 낮은 농도를 검출할 수 있는 센서를 구현하였다.
Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.
Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP–CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP–CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.
The purpose of flow analysis is to develop a simple CFD analysis model to develop a heat transfer analysis model including transient heat transfer characteristics, especially phase change, of thin film evaporators. The simple analytical model focuses on the evaporation phase change. To reduce the computational cost, the shape was simplified to two dimensions, and the simulation time was set short with a focus on simulating the phase change phenomenon. In the future, based on this analysis model, we will develop an analysis model for simulating not only vaporization but also liquefaction, that is, transient distillation phenomenon, according to the shape of the thin film distillation device.
AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9 × 10-4 Ω ‧ cm and about 1.0 × 10-4 Ω ‧ cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 °C.