This study develops a model to estimate the economic life of the large-diameter water supply pipeline in Korea by supplementing existing methods used to perform similar calculations. To evaluate the developed methodology, the model was applied to the actual target area with the conveyance pipe in P waterworks. The application yielded an economic life computation of 39.7 years, considering the cost of damages, maintenance, and renewal of the pipeline. Based on a sensitivity analysis of the derived results, the most important factor influencing the economic life expectancy was the predicted failure rate. The methodology for estimating the economic life of the water supply pipeline proposed in this study is one of the core processes of basic waterworks facility management planning. Therefore, the methods and results proposed in this study may be applied to asset management planning for water service providers.
A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.
A variety of methods for detecting the location of an underground water pipeline are being used across the world; the current main methods used in South Korea, however, have the problems of low precision and efficiency and the limitations in actual application. On this, this study developed locator capable of detecting the location of a water pipe by the use of an IMU sensor, and technology for using the extended karman filter to correct error in location detection and to plot the location on the coordinate system. This study carried out a tract test and a road test as basic experiments to measure the performance of the developed technology and equipment. As a result of the straight line, circular and ellipse track tests, the 1750 IMU sensor showed the average error of 0.08-0.11%; and thus it was found that the developed locator can detect a location precisely. As a result of the 859.6-m road test, it was found that the error was 0.31 m in case the moving rate of the sensor was 0.3-0.6 m/s; and thus it was judged that the equipment developed by this study can be applied to long-distance water pipes of over 1 km sufficiently. It is planned to evaluate its field applicability in the future through an actual pipe network pilot test, and it is expected that locator capable of detecting the location of a water pipe more precisely will be developed through research for the enhancement of accuracy in the algorithm of location detection.
Owing to time and cost constraints, new methods that would make it possible to evaluate the safety of the water supply pipeline in a less time- and cost-consuming manner are urgently needed. In response to this exigency, the present study developed a new statistical model to assess the safety of the water supply pipeline using the quantification theory type Ⅱ. In this research, the safety of the water supply pipeline was defined as ‘a possibility of the pipeline failure’. Quantification analysis was conducted on the qualitative data, such as pipe material, coating, and buried condition. The results of analyses demonstrate that the hit ratio of the quantification function amounted to 77.8% of hit ratio, which was a fair value. In addition, all variables that were included in the quantification function were logically valid and demonstrated statistically significant. According to the results derived from the application of the safety evaluation model, the coefficient of determination (R2) between K-region’s water supply pipeline safety and the safety inspection amounted to 0.80. Therefore, these findings provide meaningful insight for the measured values in real applications of the model. The results of the present study can also be meaningfully used in further research on safety evaluation of pipelines, establishing of renewal prioritization, as well as asset management planning of the water supply infrastructure.
OO상수도 매설관로 주요 불탐구간의 매설환경 조건은 고압송유관, 광케이블, 전력선, 도시가스관 등 주변지장물의 전자기장 간섭이나 도로 성토에 따른 토피고 증가 및 주변 굴착공사에 따른 접근 불가 등의 상태이므로, 관로 유지관리를 위하여 직접적인 조사 등을 실시할 필요가 있는 것으로 판단된다.
본 논문에서는 상수관로의 효율적인 유지 관리를 위해 상수도 기술진단에서 점수평가법으로 도출된 관망성능평가결과를 이용한 상수도 관로의 내구연수 및 잔존수명 산정 방법을 제시하였다. 본 연구에서 잔존수명은 ‘모델에 의해 추정된 매설 후 최적교체시기까지 경과년수’를 의미하는 ‘내구연수’와 매설 후 경과년수의 차이로 정의하였으며, 내구연수는 관망성능평가기준으로 제시된 노후관로 판정기준 점수에 도달하는 시점으로 정의하였다. 연구대상지역의 관망성능평가에 사용된 평가항목들과 노후도 점수를 상수도 관로의 잔존수명 추정을 위한 다중회귀모델의 변수로 사용하였다. 잔존수명의 산정에 필요한 내구연수를 추정하기 위하여 구축된 회귀모델에 독립변수로 사용된 노후도 점수를 나타내는 변수의 값으로 노후관로 판정기준 점수에 해당하는 값을 대입하였다. 개발된 회귀모델을 이용하여 연구대상지역 상수도 관로의 내구연수 및 잔존수명을 산정하였으며 그 결과를 지방공기업법에서 제시하고 있는 내용연수와 비교하여 분석하였다.
The review of the existing facilities inspection guideline reveals that the water supply steel pipeline is evaluated mainly by visual and safety inspection. For the efficient maintenance it is necessary to inspect the pipeline using the performance-based evaluation method throughout quantitative measurement. In this study durability evaluation index and evaluation method for the steel pipeline is presented.
본 논문에서는 대수-선형 파손율 모형(log-linear ROCOF)과 와이블 파솔율 모형(Weibull ROCOF)을 이용하여 상수도 주철 배수관로의 파손율을 모형화하고, '수정된 시간 척도'를 이용하여 최적교체시기를 산정할 수 있는 방법이 개발되었다. 두 ROCOF의 모형화를 위하여 개별 관로의 파손시간을 기록한 '파손 시간자료(failure-time data)'와 일정 시간간격 사이에서 발생하는 파손횟수를 기록한 '파손 횟수자료(failure-nu