본 연구는 환경 요인을 바탕으로 절화용 국화 생장 예측을 위한 최적의 모델을 개발하는 것을 목표로 하였다. 이를 위해 13개의 모델(Linear Regression, Lasso Regression, Ridge Regression, ElasticNet Regression, K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Neural Network, Decision Tree, Random Forest, XGBoost, AdaBoost, CatBoost, Stacking)의 성능을 R2, MAE, RMSE를 평가 지표 로 비교하였다. 단일 모델 중에서는 Decision Tree가 가장 우수한 성능을 보였으며, R2값은 0.90에서 0.91 사이였다. 앙 상블 모델 중에서는 CatBoost가 가장 높은 성능을 보였으며 (R2=0.90~0.92) Random Forest와 XGBoost 또한 유사한 성 능을 보였다. 전체적으로 트리 기반 앙상블 모델이 국화 생장 예측에 적합한 모델로 나타났다.
In this study, we developed Rapid Enrichment Broth for Vibrio parahaemolyticus (REB-V), a broth capable enriching V. parahaemolyticus from 100 CFU/mL to 106 CFU/mL within 6 hours, which greatly facilitates the rapid detection of V. parahaemolyticus. Using a modified Gompertz model and response surface methodology, we optimized supplement sources to rapidly enrich V. parahaemolyticus. The addition of 0.003 g/10 mL of D-(+)- mannose, 0.002 g/10 mL of L-valine, and 0.002 g/10 mL of magnesium sulfate to 2% (w/v) NaCl BPW was the most effective combination of V. parahaemolyticus enrichment. Optimal V. parahaemolyticus culture conditions using REB-V were at pH 7.84 and 37oC. To confirm REB-V culture efficiency compared to 2% (w/v) NaCl BPW, we assessed the amount of enrichment achieved in 7 hours in each medium and extracted DNA samples from each culture every hour. Real-time PCR was performed using the extracted DNA to verify the applicability of this REB-V culture method to molecular diagnosis. V. parahaemolyticus was enriched to 5.452±0.151 Log CFU/mL in 2% (w/v) NaCl BPW in 7 hours, while in REB-V, it reached 7.831±0.323 Log CFU/mL. This confirmed that REB-V enriched V. parahaemolyticus to more than 106 CFU/mL within 6 hours. The enrichment rate of REB-V was faster than that of 2% (w/v) NaCl BPW, and the amount of enrichment within the same time was greater than that of 2% (w/v) NaCl BPW, indicating that REB-V exhibits excellent enrichment efficiency.
작물 생육 모델은 작물의 생육을 이해하고 통합하기 위해 유용한 도구이다. 완전제어형 식물공장에서 엽채류로 활용하기 위한 퀴노아(Chenopodium quinoa Willd.)의 초장, 광합성률, 생장 모델을 예측하기 위한 모 델을 1차식, 2차식 및 비선형 및 선형지수 등식을 사용하여 개발하였다. 식물 생육과 수량은 정식 후 5일간격으로 측정하였다. 광합성과 생장 곡선 모델을 계산하였다. 초장과 정식 후 일수(DAT)간의 선형 및 곡선 관계를 얻었으나, 초장을 정확하게 예측하기 위한 모델은 선형 등식이었다. 광합성률 모델을 비선형 등식을 선택하였다. 광보상점, 광포화점, 및 호흡률은 각각 29, 813 and 3.4 μmol·m-2·s-1였다. 지상부 생체중과 건물중은 선형관계를 보였다. 지상부 건물중의 회귀계수는 0.75 (R2=0.921***)였다. 선형지수 수식을 사용하여 시간 함수에 따른 퀴노아의 지상부 건물중 증가를 비선형 회귀식으로 수행하였다. 작물생장률과 상대생장률은 각각 22.9 g·m-2·d-1 and 0.28 g·g-1·d-1였다. 이러한 모델들은 정확하게 퀴노아의 초장, 광합성률, 지상부 생체중과 건물중을 예측할 수 있다.
본 연구에서는 수입되는 바이오매스를 대체하고 증가하는 국내 RPS의무비율을 보다 효과적으로 대응하기 위해 우드펠릿으로 사용가능한 국내 산림바이오매스 부존자원을 파악하기 위하여 선행연구 방법과 매년 추가로 성장하는 임목생장률을 기준으로 미이용 산림바이오매스의 양을 산정하였다. 그 결과, 임목가공 중 발생하는 부산물 중 20%를 우드펠릿 원료로 사용한다고 가정했을 경우 두 가지 추정 방법으로 도출된 평균값을 기준으로 우드펠릿 생산 가능량을 예측 하였다. 그 결과 미이용 부산물은 2016년 199만 톤, 2020년 228만 톤, 2030년 308만 톤이 발생되고 원목가공 과정에서 발생되는 임목부 산물(피죽, 톱밥 등) 중 20%가 우드펠릿 원료로 활용될 경우 2016년 258만 톤/년, 2020년 295만 톤/ 년 2030년 398만 톤/년의 원재료가 추가되어 미이용 부산물과 원목가공 과정 중 발생되는 부산물로 생산 가능한 우드펠릿 양은 2016년에 274만 톤/년, 2020년 314만 톤/년 2030년 423만 톤/년의 우드펠릿이 생산 가능하다는 결과를 도출 하였다.
This study was conducted to develop a predictive model for the growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds. We collected E. coli kinetic growth data during red kohlrabi seed sprouting under isothermal conditions (10, 15, 20, 25, and 30°C). Baranyi model was used as a primary order model for growth data. The maximum growth rate (μmax) and lag-phase duration (LPD) for each temperature (except for 10°C LPD) were determined. Three kinds of secondary models (suboptimal Ratkowsky square-root, Huang model, and Arrhenius-type model) were compared to elucidate the influence of temperature on E. coli growth rate. The model performance measures for three secondary models showed that the suboptimal Huang square-root model was more suitable in the accuracy (1.223) and the suboptimal Ratkowsky square-root model was less in the bias (0.999), respectively. Among three secondary order model used in this study, the suboptimal Ratkowsky square-root model showed best fit for the secondary model for describing the effect of temperature. This model can be utilized to predict E. coli behavior in red kohlrabi sprout production and to conduct microbial risk assessments.