In this study, flow analysis was performed using ANSYS CFX to evaluate the performance of the 30kg hydrogen fuel cell hexa-copter drone in hovering flight. In the case of a hydrogen fuel cell hexa-copter drone, a total of four cooling fans are mounted on the drone's body in two pairs on the left and right to cool the fuel cell module. In order to evaluate the effect of the air flow from the cooling fan on the aerodynamic properties of the hydrogen fuel cell drone as the mounted cooling fan operates, the change in thrust for the case where the cooling fan operates and does not operate was compared and analyzed. Looking at the analysis results, it was found that the presence or absence of the drone's cooling fan had little effect on the drone's thrust through the thrust results for the six wings.
국제해사기구는 국제해운의 온실가스 배출을 줄이기 위한 전략을 채택하였으며, 선박 기인 온실가스 배출을 줄이기 위해 보다 강화된 목표를 설정하고 있다. 액체수소를 기화시켜 연료로 사용하는 고분자 전해질 연료전지는 이러한 규제를 준수하기 위한 유망한 기 술 중 하나로 평가받고 있다. 일반적으로 선박시스템 설계는 선급의 규정에 따라야 하지만 환경규제가 강화됨에 따라 새로운 연료와 시 스템의 도입이 가속화되고 있으며, 이로 인해 규정개발이 기술의 도입을 따라가지 못하는 경우도 발생하고 있다. 이러한 격차를 해소하기 위해, 본 연구에서는 수소 연료가스공급 시스템을 대상으로 위험요소 및 운전분석 기법(HAZOP)과 보호계층분석 기법(LOPA)을 결합하여 신기술의 안전성을 검증하는 방법을 제시하였다. 먼저 HAZOP을 통해 위험 시나리오를 식별하고, LOPA를 통해 정성적인 HAZOP 결과를 정량적으로 보완하였다. 초기사건의 빈도와 독립보호계층(IPL)들의 작동 요구시 고장 확률(PFD)을 계산하였다. 기존 IPL의 적절성을 결정 하기 위해, 예상되는 완화 정도를 가정한 허용기준과 비교하였으며, 필요한 경우, 추가 IPL을 권장하였다. 본 연구를 통해서 HAZOP-LOPA 기법이 조선해양 분야에서 신기술의 안전성을 평가할 수 있는 잠재력을 가지고 있음을 확인하였다.
본 연구에서는 온실가스 배출을 감축하기 위해 메탄올을 추진 연료로 사용하는 선박에 수소 연료전지 시스템이 추가된 하 이브리드 시스템 공정을 설계하였다. Case1에서는 메탄올 연료 엔진 시스템을 설계하여, 엔진에 가솔린 대신 메탄올을 연료로 공급했 을 때의 배기가스 배출량을 알아보았다. Case2에서는 Case1에 메탄올 개질 시스템을 추가해, 수소연료전지 시스템을 설계하였다. 이 하 이브리드 시스템에서는 그레이 수소를 생산하며, 엔진과 연료전지의 출력을 조합하여 선박을 구동한다. 하지만 그레이 수소는 수소를 생산하는 과정에서 탄소를 배출한다는 단점이 있다. 이 점을 보안하기 위해 Case3에서는 CCU시스템을 추가하였다. Case2에서 배출한 Flue gas의 이산화탄소를 포집한 후, 그레이 수소와 합성해 블루 메탄올을 생산하였다. 본 연구에서는 Case study를 통해 개질 온도22 0℃, 개질 압력500kPa, SCR은 1.0, flow ratio가 0.7일 때 최적의 운전조건임을 알 수 있었다. Case3의 시스템은 Case1에 비해 탄소 배출량 을 42% 감소시켰다. 결과적으로, Case3의 하이브리드 시스템을 통해 선박의 이산화탄소 배출을 유의미하게 저감할 수 있을 것으로 예 상한다.
The electrification of transportation is expected to greatly contribute to achieving the global climate change target. This study analyzed technological competitiveness in the fuel cell electric vehicle (FCEV) field based on patent family and citation index. Technology analysis was conducted by dividing FECV into six sub-technology areas based on IPC with fuel cell system, fuel cell technology, vehicle system, hydrogen storage and fueling, catalyst technology and etc. The largest number of patents are being filed in the fuel cell system technology field, and the fields with high growth rates over the past 10 years (2012-2022) were vehicle systems (12.4%) and hydrogen storage fuel field(11.5%). As of 2021, among global automakers, Toyota ranks the first in patent applications for FECV followed by Hyundai Motors in Korea, followed by Honda and Audi, with an average annual growth rate of 19.8%, the highest among competitors.
직접 메탄올 연료전지(direct methanol fuel cell, DMFC)는 연료의 개질 없이 메탄올 연료를 공급하여 수소이온과 전자 생성을 통해 전류를 생산하는 에너지 변환 장치이다. 현재 DMFC에 적용되고 있는 고분자 전해질 막(polymer electrolyte membrane, PEM)은 높은 수소이온 전도도와 물리화학적 안정성을 갖는 과불소화계 이오노머를 활용한 PEM이지만, 높 은 메탄올 투과율과 분해 시 발생되는 환경 오염 물질 등의 문제로 인해 신규 소재 개발이 요구되고 있다. 최근 들어, 과불소 화계 이오노머에 비해 낮은 연료 투과율 및 우수한 물리화학적 안정성을 갖는 탄화수소계 고분자 기반 PEM을 DMFC에 적 용하는 연구들이 보고되고 있다. 본 총설에서는 탄화수소계 고분자 기반 PEM 중 1) 친수성/소수성 영역의 뚜렷한 나노 상분 리 구조를 나타내는 가지형 공중합체를 합성하여 수소이온 전도성과 메탄올의 선택도를 향상시킨 연구, 2) 제막 단계에서 가 교 구조를 도입하여 메탄올 투과율을 감소시키고 치수 안정성을 향상시킨 연구, 3) 유/무기계 첨가제 및 다공성 지지체를 도 입하여 성능을 개선한 복합 막 개발 연구에 대해 소개하고자 한다.
수소는 다양한 신재생에너지 중 환경친화적인 에너지로 각광받고 있지만 농업에 적용된 사례는 드물다. 본 연구는 수소 연료전지 삼중 열병합 시스템을 온실에 적용하여 에너지를 절 약하고 온실가스를 줄이고자 한다. 이 시스템은 배출된 열을 회수하면서 수소로부터 난방, 냉각 및 전기를 생산할 수 있다. 수소 연료 전지 삼중 열 병합 시스템을 온실에 적용하기 위해 서는 온실의 냉난방 부하 분석이 필요하다. 이를 위해서는 온 실의 형태, 냉난방 시스템, 작물 등을 고려해야 한다. 따라서 본 연구에서는 건물 에너지 시뮬레이션(BES)을 활용하여 냉 난방 부하를 추정하고자 한다. 전주지역의 토마토를 재배하 는 반밀폐형 온실을 대상으로 2012년부터 2021년까지의 기 상데이터를 수집하여 분석했다. 온실 설계도를 참고하여 피 복재와 골조를 모델화하여 작물 에너지와 토양 에너지 교환을 실시했다. 건물 에너지 시뮬레이션의 유효성을 검증하기 위 해 작물의 유무에 의한 분석, 정적 에너지 및 동적 에너지 분석 을 실시했다. 또한 월별 최대 냉난방 부하 분석에 의해 평균 최 대 난방 용량 449,578kJ·h-1, 냉방 용량 431,187kJ·h-1이 산정 되었다.
본 연구에서는 실리카 복합막 기반 고분자 전해질막을 5단 연료전지 스택에 적용하여 성능 평가를 수행하였다. 이를 통하여, 개별 구성 요소의 성능도 중요하지만, 전체적인 관점에서 공급되는 연료의 유량이 스택 성능에 중요한 역할을 하며, 특히 수소의 유량에 크게 의존한다는 사실이 확인하였다. 산소의 유량을 증가시켜도 성능의 변화는 미미한 반면, 수소 의 유량을 증가시키면 성능이 향상되는 것을 확인하였다. 그러나 수소의 유량 증가는 수소와 산소 유량 비율의 불균형을 초 래하여 장기적으로는 스택 성능과 내구성을 저하시키는 문제가 관찰되었다. 이러한 현상을 스택 구성 요소 및 개별 단위 셀 에서도 관찰할 수 있었으며, 따라서 스택 운전 시 각 구성 요소의 성능을 최적화하는 것 외에도 균일한 유량 제어를 위해 유 로 설계 및 운전 조건을 최적화하는 것이 중요하다는 것을 알 수 있었다. 마지막으로 실리카 복합막은 최대 출력 기준 25 W 이상의 성능을 나타내어 실제 연료전지 시스템에 적용하기에 충분한 성능을 갖춘 것으로 판단된다.
금속의 취성화는 수소와 접촉하는 구조물을 안정적으로 설계하는데 있어서 큰 문제가 되어왔다. 본 논문에서는 분자동역학 해석을 통해 균열선단 주변에 모인 수소원자들이 전위 이동 현상을 억제하고, 이로 인해 벽개 파괴 현상이 발생하는 것을 확인하였다. 다양한 수소 농도, 하중 속도, 수소 확산 속도 등을 바꾸어가며 분자동역학 해석을 수행하였고, 이에 따른 수소 취성화를 최소화시킬 수 있는 조건들을 조사하였다. 분자동역학 해석 결과는 기존의 실험결과와 잘 일치하였으며 이를 바탕으로 수소 취성화 현상을 정량화하여 평가하였다.
고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)의 핵심 구성요소 중 하나인 고분자 전해질 막(polymer electrolyte membrane, PEM)은 수소이온을 애노드(anode)에서 캐소드(cathode)로 이동시키는 전해질의 역 할 및 연료의 투과를 막는 분리막으로서의 역할을 수행하며 PEMFC의 성능 및 효율을 결정짓는 핵심 소재이다. 현재 나피온 (Nafion®)으로 대표되는 과불소화계 전해질 막이 높은 수소이온 전도도 및 화학적 안정성으로 인해 상용화 되었지만, 높은 생 산비용과 구동 시 환경오염 물질이 배출된다는 문제점을 갖고 있다. 이를 대체할 PEM 소재로써 고분자의 구조 조절 및 개질 과정이 용이한 다양한 종류의 탄화수소계 고분자가 제시되고 있지만, 실제 PEMFC에 적용되기 위해서는 성능 및 내구 특성 을 개선해야 하는 과제가 남아있다. 이에 본 총설은 탄화수소계 PEM의 성능 및 내구 특성을 향상시키기 위해 1) 가교 구조 를 도입한 가교 막 개발, 2) 무기 첨가제 도입을 통한 유⋅무기 복합 막 개발 및 3) 다공성 지지체를 활용한 강화 복합 막을 개발하는 연구에 대해 살펴보고자 한다.