The with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from , the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to It shows AlO(OH) sequences. The compacted at shows a high surface area .
A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite(. or AIO(OH)) was predominantly formed in high temperature region over 4, while the Bayerite(. or ) below of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about /g.
본 연구는 최근 친환경 대체 시멘트로 주목받고 있는 칼슘설포알루미네이트(calcium sulfoaluminate, CSA) 시멘트의 수화 반응을 탐구한다. 배합수 및 석고의 첨가량에 따른 페이스트 배합실험을 하였으며, X-선 회절(X-ray diffraction, XRD)실험을 통해 각 변수 및 재령 일에 따른 광물 상(mineralogical phase)을 정량분석하였다. 클링커 광물의 정량분석 결과를 입력 값으로 깁스 에너지(Gibbs energy) 최소화 계산을 통한 CSA 시멘트의 수화반응 모형을 도출하였다. 배합수의 증가는 CSA 시멘트의 수화반응을 촉진 및 향상하는 것으로 조사되었으며, 석고 첨가량 증가에 따라 CSA 시멘트의 완전 수화를 위한 최소 요구 배합 수량이 증가하는 것으로 조사되었다.
This study evaluated the standard consistency, setting time, hydration heat, and compressive strength of binary blended cement concrete (general and high strength) using air cooled ladle furnace slag (LFS) of 3, 5, 7, 10wt.% as an admixture for ordinary portland cement (OPC). Results showed that binary blended cements using the LFS of lower than 5wt.% shortened the setting time and reinforced the compressive strength of concrete (general and high-strength) compared to OPC concretes although binary blended cements needed more water to achieve the standard consistency. This indicated that LFS could be used as a useful admixture for manufacturing binary blended cement. Thus, we expected that the upcycling of LFS would be contributed to save energy consumption and reduce the greenhouse gas emission from the field of cement industry.
The phenomenon of leaching consists in the dissolution of solid calcium in cement hydrates when concrete is exposed to any aggressive solution. Calcium leaching is completely controlled by the thermodynamic equilibrium between cement hydrates and the porous solution. Thus, it might be described by considering the hydrates (C-S-H and aluminates) solubility evolution with pH. Nevertheless a simplifed model has been proposed considering only the different calcium phases of the hydrates. This study suggested definition of calcium leaching density with type of cement hydrate.
The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. AFm phase showed a slow chemical adsorption in 40 days, while C-S-H phase showed binding behavior with 3 stages including the stage of instantaneous physical adsorption other stages.
The purpose of this study is to analyse the hydration reaction of paste according to fineness of non-cement binder, as a basic for the development of non-cement concrete block. As the fineness of binder increased, compressive strength of paste increased, and C-S-H gel was produced actively.