검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        n-Butanol is used to assess how odor intensity correction affects judges’ evaluation of the odor intensity based on the concentration. The odor intensity correction effect is verified by using three types of test solutions which are used for the selection of judges based on their concentration levels. The correction effect is statistically analyzed according to gender, odorant type, and concentration on the group and individual level. The result shows that n- Butanol correction affects the odor intensity evaluation for three odorants in different ways. In most cases, n- Butanol correction increases the panelists' sensitivity to the odor intensity change, and results to be close to the theoretical value. The female panelists can more accurately evaluate the sourness intensity of acetic acid after n- Butanol correction. All panelists regardless of gender can more accurately evaluate the fishiness intensity of trimethylamine after n-Butanol correction. For evaluating the caramel smell intensity of methylcyclopentenolone, a full panel without n-Butanol correction is recommended. Therefore, n-Butanol correction should be included in the process of judge selection and the odor intensity assessment.
        4,300원
        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The stench of various sources has become a complex issue that all governments must face and solve. n-Butanol is often used as an odor intensity reference for daily air quality monitoring and evaluation. However, its odor space, including odor sensation and odor effect, is still not fully understood, especially in wide concentration ranges. This study described n-butanol odor character profiles with objective descriptors. They are mostly presented as “odorless” or “offensive” at low concentrations, and frequently characterized as “chemical” or “medicinal” at high concentrations. The semantic differential shows that n-butanol odor is a negative emotional odor rather than a positive one. The principal component analysis shows that the representative factors of the n-butanol sensibility structure according to the sensibility evaluation are expressed with diverse sensibility vocabulary, and ‘esthetics’ represent its characterless nature. The good linearity between intensity and concentration, the near absence of gender difference, diverse odor types rather than a specific type, and ease with which to make a wide range of concentrations, makes n-butanol a candidate to be considered as a suitable standard odorant.
        4,000원
        3.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The labeled magnitude scale (LMS) was proposed as the magnitude estimation of perceived odor intensity while the direct olfactory method is a basis of odor evaluation. Six chemicals (pyridine, ethanol, ethyl acetate, acetone, trimethylamine, and β-phenylethyl alcohol) were tested to demonstrate the limitation of the current odor intensity scale and the possibility of the alternative method. The 6-point odor intensity reference scale, which is wildly used in the field, has the inevitable limitation of the perceived magnitude of odor intensity. It has failed to express the magnitude objectively when odor intensity increased and the magnitude scale was limited. It was experimentally proven that LMS presents the function of the existing method and effectively evaluates the wide range of odor intensity.
        4,000원
        4.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study has intended to analyze the impact of odor perception of residents, who currently live in Ochang industrial complex, on their subjective odor sensitiveness. In addition to the relationship between the perception and the sensitiveness, odor acceptance was considered as moderating variable in a research model. Korean governments has experienced even great and small civil complaints regarding bad smells throughout the country especially around the industrial complex. The residential areas are getting much closer to industrial complex due to major cities’ expansion. The closer cities are to industrial areas, the bigger the conflicts are growing due to the odor. According to the research results, it was proven that residents’ concerns on an bad image due to odor, their perception on an administrative agency’s responsibilities and economical values of their living places have a significant effect on the odor sensitiveness. Moreover, odor acceptance perceived by them has a negative moderating effect between odor perception and odor sensitiveness. Based on such results, implications and suggestions are included in the research to support the research objectives.
        4,000원
        5.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to understand the correlation between odor intensity and dilution factor using the Air Dilution Olfactory Method, which is suggested in the Standard Method of Odor Compounds, by measuring odor intensity and dilution factor for fatty acids and i-butyl alcohol. For the measurement, 18 panel members were selected through a panel test, and odor intensity and dilution factor by substance produced from the selected panel were estimated. The estimation showed that the correlation of odor intensity with dilution factor for a fatty acids and i-butyl alcohol can be reasonably expressed by the equation I = A·log D + 0.5 (I : odor Intensity, D : dilution factor, A : material constant). The material constant was in order of propionic acid 2.0709, n-butyric acid 1.6006, n-valeric acid 1.3369, i-valeric acid 1.182, i-butyl alcohol 1.4326. The geometric average of increased dilution factor for the 5 compounds is about 4.8 time, 3.0 time for propionic acid and 7.0 tme for i-valeric acid due to odor intensity 1 increasing. It is suggested that the result of this study could be used as a base data for research on measures to improve the regulation standards for complex odor concentrations at a boundary sites in operation.
        4,000원
        6.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to evaluate the relationship between concentration and odor intensity using the odor sensory method for 4 types of fatty acid compounds and i-butyl alcohol. For the measurement, 18 panelists were selected based on several criteria through a panel test. Panelists chosen for their closely similar sensitivities provided more reproducible values. The estimation showed that the correlation of the concentration with odor intensity for the 5 compounds, including the fatty acid compounds and i-butyl alcohol can be reasonably expressed by the Weber-Fechner equation. Notably the standards regulation fatty acid concentrations are very strict, and the butyl acetate standards are very loose. It is suggested than the results of this study can be used as basic data for research on measures to improve the regulation standards on complex odor concentrations on site boundaries in operation, as well as the correlation between concentration and odor intensity for the designated foul odor substances, and their characteristics.
        4,000원
        7.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to evaluate the relationship with the concentration and odor intensity using the odor sensory method for 5 types of aldehyde compounds and styrene. For the measurement, 13 panelists were selected by several criteria through a panel test. The estimation showed that the correlation of the concentration with odor intensity for the 12 compounds including of the sulfur compounds, ammonia, and trimethylamine can be reasonably expressed by the equation I = Aㆍlog C + B (I : odor Intensity, C : material concentration, A : material constant, B : constant). The equations show the sensivities of intensity change for the change of concentration. According to the increase of concentration the odor intensities for acetaldehyde and iso-valeraldehyde increase larger than for the other aldehydes. Regulation standards of 12 species of odor substance concentraton and odor intensity by using the correlation equation was reviewed for adequacy. It was evaluated that the regulation standards on site boundary in operation are too low for NH₃, DMDS, and iso-valeraldehyde and too high for TMA. The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration on site boundary in operation.
        4,000원
        8.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to evaluate the relationship with the concentration and odor intensity using the odor sensory method for 4 types of sulfur compounds, ammonia, and trimethylamine. For the measurement, 13 panelists were selected by several criteria through a panel test. Panelists chosen for their closely similar sensitivities provide more reproducible values. The estimation showed that the correlation of the concentration with odor intensity for the 6 compounds can be reasonably expressed by the equation I=Aㆍlog C+B (I: Odor Intensity, C: material concentration, A: material constant, B: constant). The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration on site boundary in operation, as well as a correlation between the concentration and odor intensity for the designated foul odor substances, and their characteristics.
        4,000원
        9.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to understand the correlation between odor intensity and dilution factor using the Air Dilution Olfactory Method, which is suggested in the Standard method of Odor Compounds, by measuring odor intensity and dilution factor for NH₃, TMA and styrene. For the measurement, 13 panel members were selected through a panel test, and odor intensity and dilution factor by substance produced from the selected panel were estimated. The estimation showed that the correlation of odor intensity with dilution factor for NH₃, TMA and styrene can be reasonably expressed by the equation [I=AㆍLog D +0.5]. The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration at a boundary site in operation, as well as a correlation between odor intensity, concentration and dilution factor for the designated odor substances, and their characteristics.
        4,000원
        10.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to understand the correlation between odor intensity and dilution factor using the Air Dilution Olfactory Method, which is suggested in the Standard method of Odor Compounds, by measuring odor intensity and dilution factor for 5 types of carbonyl compounds. For the measurement, 13 panel members were selected through a panel test, and odor intensity and dilution factor by substance produced from the selected panel were estimated. The estimation showed that the correlation of odor intensity with dilution factor for the 5 carbonyl compounds can be reasonably expressed by the equation [I = AㆍLog D + 0.5]. The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration at a boundary site in operation, as well as a correlation between odor intensity, concentration and dilution factor for the designated odor substances, and their characteristics.
        4,000원
        11.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we attempted to evaluate the relationship between dilution‐to‐threshold (D/T) ratio derived by air dilution sensory (ADS) test and the concentration levels of both individual odorant (using H₂S and acetaldehyde (AA)) and their mixture. For the purpose of our comparative study, we prepared both standard gases of two individual compounds and their mixture at 9 concentration levels. Each of all these samples were analyzed by ADS test, and the results were analyzed in relation to their odor intensity. The results of individual odorant samples showed the two contrasting characteristics of each individual compound. H2S generally showed sensitive detection at low concentration but less sensitive detection with increasing concentration. In contrast, AA showed fairly contrasting trend with slow increasing sensitivity. When the D/T ratios estimated from individual samples were used to predict those of mixed samples, the results were reflecting the mixed effects of the basic characteristics owned by each individual compound. As the lower and upper odor intensities of mixed samples were best reflected by AA and H2S, respectively, the D/T ratio of mixed samples complied with the larger D/T values of each compound at a given odor intensity.
        4,000원
        12.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to understand the correlation between odor intensity and dilution factor using the Air Dilution Olfactory Method, which is suggested in the Standard method of Odor Compounds, by measuring odor intensity and dilution factor for 4 types of sulfur compounds. For the measurement, 13 panel members were selected through a panel test, and odor intensity and dilution factor by substance produced from the selected panel were estimated. The estimation showed that the correlation of odor intensity with dilution factor for the 4 sulfur compounds can be reasonably expressed by the equation [I = AㆍLog D+0.5]. The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration at a boundary site in operation, as well as a correlation between odor intensity, concentration and dilution factor for the designated odor substances, and their characteristics.
        4,000원
        13.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to develop an odor intensity reference scale appropriate to the characteristics of Koreans, based on ASTM E544-99. The Odor Intensity Reference Scale of the United States utilized to make up for the absolute index of odor intensity. The concentrations of n-butanol, which is equivalent to the 5th stage of odor intensity in Korea, are proposed to be 100, 400, 1500, 7000, and 30000 ppm, respectively. Based on the ASTM E544-9 method, the reference scales of Korea odor intensity were compared and the result showed that the reproducibility and practicability of the method were satisfactory. it is therefore suggested that n-Butanol, which is processed with the proposed concentration levels as the absolute standards for odor intensity, can be used as Korea Odor Intensity Reference Scale for the experiment of panel screening test in an air dilution olfactory method.
        3,000원