검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2017.11 서비스 종료(열람 제한)
        탄소기반의 유기화합물로 이루어져 있는 바이오매스(Biomass)는 차세대 에너지원으로서의 역할을 기대하고 있으며 풍부한 부존량과 탄소 중립적인 특징을 가지고 있다. 목질계 바이오매스의 구성성분 중 25~35%를 차지하고 있는 리그닌(Lignin)은 복잡하고 거대한 페놀축합물로 이루어져 있는 풍부한 천연 고분자이다. 본 연구에서는 리그닌을 에너지자원으로서 활용을 극대화하기 위하여 회전로상(Rotating bed) 열분해 공정을 구성하였고, 리그닌을 회전로상 열분해 공정에 적용하기 전에 고정층(Fixed bed) 열분해 실험을 실시하였다. 리그닌의 물리・화학적 특성, 열적특성을 분석하였고, 고정층 열분해 공정과 회전로상 열분해 공정을 적용하여 리그닌의 열분해 특성을 분석하였다. 리그닌은 휘발분(volatile matter) 62.9%와 고정탄소(fixed carbon) 32.6%가 주를 이루고 있었으며, 원소분석결과 탄소(C) 62.4%와 산소(O) 30.6%가 주를 이루고 있는 것을 알 수 있었다. 열중량분석(TGA) 결과 리그닌의 중량감소는 500℃의 온도범위 이후 반응이 종료됨을 확인 할 수 있었다. 회전로상 공정에서의 액상생성물은 약32.0%의 생산 수율을 보였으며, 고부가가치 성분인 monomeric phenolics 성분들이 주로 검출되었다. 발열량 측정 결과 약 7,000kcal/kg로 측정 되었고, 시판되고 있는 연료 및 연료보조제와 비교를 통해 연료로서의 수준을 나타내었다. 공정의 특성을 분석하기 위해 컴퓨터 프로그램 전산유체역학(CFD, Computational Fluid Dynamics) 상용 Sofrware인 FLUENT를 사용하였다. 위의 실험과 시뮬레이션을 통해 회전로상 열분해의 액상생성물 특성 분석과 공정의 일반화 가능성을 보고자 하였다.
        2.
        2015.11 서비스 종료(열람 제한)
        산업화/도시화에 의해 물 사용량이 증가하여, 하수 및 폐수 처리 후 부산물로 발생하는 슬러지 또한 매년 증가하고 있다. 하지만 기존 처리방식 중 비중이 큰 해양투기는 2012년부터 런던협약에 의해 금지됨으로써, 육상에서 슬러지 처리하기 위한 적절한 대책이 필요한 상태이지만, 매립이나 소각처리 방식은 2차 오염이 발생되므로 한계를 가지고 있어 새로운 방식이 요구되고 있다. 폐기물 에너지화 관점에서 슬러지 폐기물의 유기성 성분을 오일과 가연성 가스로 전화하는 열분해 기술에 대한 연구가 많이 진행되고 있다. 따라서, 하수슬러지 열분해 특성을 파악하기 위하여 탈수슬러지와 건조슬러지의 열분해 특성을 파악하고자 한다. 슬러지 열분해 실험을 위한 실험 장치를 열분해로, 가스 및 냉각수 라인, 가스와 타르 포집 및 분석라인으로 구성된다. 열분해로는 반응관, 전기로, 전기로 콘트롤러(Model UP35A, Yokogawa), 가스 배출 관으로 구성하였다. 하수처리장에서 발생되는 슬러지의 열적 특성 파악하기 위해서 Ar 분위기 하에서 10℃/min 온도 증가율에서 측정한 TG-DTA 결과를 Fig. 1에 나타내었다. 하수슬러지는 상온에서 200℃ 이하에서는 수분 증발에 의한 무게감량이 일어나고, 그 이후부터 탈휘구간이 형성된다. 200℃ ~ 400℃에서 급격한 무게감량이 보이며, 약 600℃까지의 무게감량은 유기물의 열분해에 의한 것이며, 600℃ 이상에서는 무기물 열분해에 의한 것이다. 하수슬러지 열분해 시 생성되는 타르, 가스, 촤의 중량비를 Fig. 2에 나타내었다.