기존 신호제어기법은 과거 주기에 파악된 교통상황을 바탕으로 다음 주기의 교통신호시간을 설계하는 방식으로 신호시간을 설계하기 위해 관측할 때의 교통상황과 신호시간을 제공받는 교통상황 간의 간극이 존재하였다. 또한, 설정된 주기길이 동안 차량이 교차로에 일정하게 도착하는 균일분포를 가정하지만, 실제 교차로에 도착하는 교통량의 행태는 비 균일분포로 실제 교통수요에 대응하기 어렵 다는 한계가 존재한다. 본 연구는 이러한 한계를 극복하기 위해 교차로로 진입하는 상류 교차로의 교통정보를 활용하여 단기 미래 도 착 교통량 예측모델 개발을 통해 관측 시점과 제공 시점 간의 간극을 최소화한다. 또한, 기존 주기길이 동안의 교통량 도착분포를 비 균일분포로 가정하여 주기길이가 고정되지 않는 방식(Acyclic)의 적응식 신호제어 기법(ATC) 개발한다. 제안된 단기 미래 도착 교통 량 예측모델은 실제 스마트교차로 자료를 가공하여 시뮬레이션을 통하여 학습데이터를 구축하여 장단기 메모리(LSTM) 모형과 시간 분산(TimeDistributed) 모형을 적용하여 딥러닝 모델을 개발하였다. 적응식 교통신호제어 기법은 실시간 예측 교통량을 활용하여 교통 류별 예측 지체 산출을 통하여 지체가 최소화되는 현시 종료 지점에서 현시를 종료하고 다음 시간 단계에서 예측된 교통량을 통해 최 적 현시를 재산출하는 롤링 호라이즌(Rolling Horizon)을 수행한다. 제안 신호제어 기법의 평가를 위해 미시적 교통 시뮬레이션을 활 용하여 기존 신호제어 기법인 TOD 신호제어 기법과 제안기법 간의 평가를 수행하였다.
In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.
현대 해양 산업은 기술적 발전을 통해 신속한 발전을 이루고 있다. 이러한 발전을 주도하는 주요 기술 중 하나는 데이터 처리 기술이며, 이 중 자연어 처리 기법은 사람의 언어를 기계가 이해하고 처리할 수 있도록 하는 기술이다. 본 연구는 자연어 처리 기법을 통해 해양안전심판원의 재결서를 분석하여 이미 재결이 이루어진 선박 충돌사고의 원인 제공 비율을 학습한 후, 새로운 재결서를 입력 하면 원인 제공 비율을 예측하는 모델을 개발하고자 하였다. 이 모델은 사고 당시 적용되는 항법과 원인 제공 비율에 영향을 주는 핵심 키워드의 가중치를 이용하여 사고의 원인 제공 비율을 계산하는 방식으로 구성하였다. 이 연구는 이러한 방식을 통해 제작한 모델의 정 확도를 분석하고, 모델의 실무 적용 가능성을 검토함과 동시에 충돌사고 재발 방지 및 해양사고 당사자들의 분쟁 해결에 기여할 것으로 기대한다.
The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.
철도교량의 설계는 장기간에 걸쳐 수행되고 대규모의 부지를 대상으로 하기 때문에 다양한 환경적인 요인과 불확실성을 동반하게 된다. 이러한 연유로 초기 설계단계에서 충분히 검토하였더라도 설계변경이 종종 발생하고 있다. 특히 철도교량과 같은 대규모 시설 물의 설계변경은 많은 시간과 인력을 소모하며, 매번 모든 절차를 반복하는 것은 매우 비효율적이다. 본 연구에서는 딥러닝 알고리즘 중 전이학습을 통해 설계변경 전의 학습 결과를 활용하여 설계변경 후의 학습의 효율성을 향상시킬 수 있는 기법을 제안하였다. 분석 을 위해 기개발한 철도교량 딥러닝 기반 예측 시스템을 활용하여 시나리오들을 작성하고 데이터베이스를 구축하였다. 제안된 기법은 설계변경 전 기존 도메인에서 학습에 사용한 8,000개의 학습데이터 대비 새로운 도메인에서 1,000개의 데이터만을 학습하여 유사한 정확도를 나타내었고 보다 빠른 수렴속도를 가지는 것을 확인하였다.
급격한 산업화와 도시화로 인해 해양 오염이 심각해지고 있으며, 이러한 해양 오염을 실효적으로 관리하기 위해 수질평가 지수(Water Quality Index, WQI)를 마련하여 활용하고 있다. 하지만 수질평가지수는 다소 복잡한 계산과정으로 인한 정보의 손실, 기준값 변동, 실무자의 계산오류, 통계적 오류 등의 불확실성(uncertainty)을 내포하고 있다. 이에 따라 국내ㆍ외에서 인공지능 기법을 활용하여 수질평가지수를 예측하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 해양환경측정망 자료(2000 ~ 2020년)를 활용하여 우리나 라 전 해역 즉, 5개의 생태구에 대한 WQI를 추정할 수 있는 가장 적합한 인공지능기법을 도출하기 위해 총 6가지의 기법(RF, XGBoost, KNN, Ext, SVM, LR)을 실험하였다. 그 결과, Random Forest 기법이 다른 기법에 비해 가장 우수한 성능을 보였다. Random Forest 기법의 WQI 점수 예측값과 실제값의 잔차 분석 결과, 모든 생태구에서 시간적 및 공간적 예측 성능이 우수한 것으로 나타났다. 이를 통해 본 연구에서 개발한 Random Forest 기법은 높은 정확도를 바탕으로 우리나라 전해역에 대한 WQI를 예측 가능할 것으로 사료된다.
Most of automobile steering parts are manufactured through the multi-stage cold forging process using round-bar drawn materials. The same process is applied to the ball stud parts of the outer ball joint, and various research activities are being carried out to reduce the extreme manufacturing cost in order to survive in the limitless competition. In this paper, we present a quantitative prediction method for the limiting life of the die as a method for cost reduction in the multi-stage cold forging process. The load on the die was minimized by distributing the forming load based on process optimization through finite element analysis. In addition, based on the quantitative prediction algorithm of the limiting life of the die, the application of the split die and the optimization of the phosphate treatment of the material surface are presented as a conclusion as a method to improve the limiting life of the die.
본 연구에는 가뭄의 유발 요인으로 강수량, 기온, 상대습도 등의 기상현상을 활용하고 가뭄 피해로 인한 대응 요소로서 대체수원, 제한급수, 운반급수 등의 비상급수를 적용하여 AI기반 가뭄 대응 정보 구축 방안을 구성하였다. AI 머신 러닝 기법 중 널리 사용되는 의사결정나무 모형을 통하여 예측 기법을 수립하였다. 연구 대상 지역은 비상급수 활용 빈도가 높고 종관기상관측소가 존재하는 충주시, 안동시, 의성군을 선정하였다. 자료 기간은 2014년부터 2019년까지의 자료를 이용하였으며, 가뭄 유발 기상요인으로 ASOS의 강수량 및 기온, 습도를 이용하고 가뭄 피해 요소로 국가 가뭄정보 포털의 비상급수 현황 자료를 활용하였다. 모형 학습 결과 정확도가 약 0.97, F1-Score가 약 0.5로 나왔으며, 이는 비상급수가 필요한 상황과 그렇지 않은 상황을 97%의 확률로 예측할 수 있음을 의미하며, 비상급수가 필요했던 표본만을 대상으로 했을 경우 약 50%의 확률로 예측이 가능한 것을 의미한다. 따라서 의사결정나무 모형을 적용하여 예측 정확도를 분석한 결과 가뭄 대응 비상급수 준비지역 예측을 위한 적용성이 높은 것으로 평가되었다. 그러나 본 연구에서는 기상 조건만을 가뭄 유발 요인으로 반영하였기 때문에, 공급수량 부족 등의 요인을 추가적으로 검토할 필요가 있으므로 가뭄과 연관된 요소인 저수지 용량 등을 추가하고 비상급수 이외의 피해 요소 역시 확장하여 연구를 개선하고자 한다.
해운 시황을 예측하는 것은 중요한 문제이다. 투자 방식의 결정, 선대 편성 방법, 운임 등을 결정하기 위한 판단 근거가 되며 이는 기업의 이익과 생존에 큰 영향을 미치기 때문이다. 이를 위해 본 연구에서는 기계학습 모델인 장단기 메모리 및 간소화된 장단기 메모리 구조의 Gated Recurrent Units를 활용하여 컨테이너선의 해상운임 예측 모델을 제안한다. 운임 예측 대상은 중국 컨테이너 운임지수 (CCFI)이며, 2003년 3월부터 2020년 5월까지의 CCFI 데이터를 학습에 사용하였다. 각 모델에 따라 2020년 6월 이후의 CCFI를 예측한 후 실 제 CCFI와 비교, 분석하였다. 실험 모델은 하이퍼 파라메터의 설정에 따라 총 6개의 모델을 설계하였다. 또한 전통적인 분석 방법과의 성 능을 비교하기 위해 ARIMA 모델도 실험에 추가하였다. 최적 모델은 두 가지 방법에 따라 선정하였다. 첫 번째 방법으로 각 모델을 10회 반복 실험하여 얻은 RMSE의 평균값이 가장 작은 모델을 선정하는 것이다. 두 번째 방법으로는 모든 실험에서 가장 낮은 RMSE를 기록한 모델을 선정하는 것이다. 실험 결과 전통적 시계열 예측모델인 ARIMA 모델과 비교하여 딥러닝 모델의 정확도를 입증하였으며, 정확한 예측모델을 통해 운임 변동의 위험관리 능력을 제고시키는데 기여했다. 반면 코로나19와 같은 외부 효과에 따른 운임의 급격한 변화상황이 발생한 경우, 예측모델의 정확도가 감소하는 한계점을 나타냈다. 제안된 모델 중 GRU1 모델이 두 가지 평가 방법 모두에서 가장 낮은 RMSE(69.55, 49.35)를 기록하며 최적 모델로 선정되었다.
There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.
산지재해는 1차적으로 산지사면에서 산사태가 발생되어 2차적으로 계류를 따라 토석류로 이동 및 확산되면서 산지 하부지역의 시설지와 주거지에 피해를 발생시킨다. 따라서 본 연구는 전라북도 지역의 토석류 발생지 79개소를 조사 대상으로 현장조사를 통한 발생 길이에 영향을 미치는 인자를 구명하고, 수량화이론(I)을 이용하여 발생 길이에 대한 각 인자의 기여도 분석을 통해 예방적인 측면에서 전라북도 지역 내 토석류 발생 위험지역에 대한 예측기준을 작성하였다. 토석류의 발생 길이에 영향을 미치는 인자는 모암(화성암), 횡단사면(복합사면), 입목 흉고직경(6cm 이하), 표고(501m 이상), 발생위치(산록) 등이었다. 각 인자의 범위를 추정한 결과, 모암(0.5633)이 가장 높게 나타나 전라북도 지역의 토석류 발생 위험도에 큰 영향을 미치는 것으로 추정되었으며, 다음으로는 횡단사면(0.4565), 사면위치(0.3568), 흉고직경(0.3274), 표고(0.3052)순으로 나타났다. 전라북도 지역 산지에서 토석류 발생 위험도 판정식을 기준으로 5개 인자의 카테고리별 점수를 계산한 추정치 범위는 0점에서 2.0092점 사이에 분포하였다. 중앙값인 1.0046점을 기준으로 토석류 위험도 예측을 위한 등급을 분류한 결과 Ⅰ등급은 1.5070 이상, Ⅱ등급 1.0047 ∼ 1.5069, Ⅲ등급 0.5023 ∼ 1.0046, IV등급 0.5022 이하로 나타났고, Ⅰ등급과 Ⅱ등급에서 토석류 발생비율이 76%로서 비교적 높은 적중률을 보였다. 따라서 본 판정표는 전라북도의 산지에서 지역의 위험 비탈면에 있어서 토석류 발생 위험도 판정에 유용하게 활용할 수 있을 것으로 판단된다.
In this study, we performed algorithms to predict algae of Chlorophyll-a (Chl-a). Water quality and quantity data of the middle Nakdong River area were used. At first, the correlation analysis between Chl-a and water quality and quantity data was studied. We extracted ten factors of high importance for water quality and quantity data about the two weirs. Algorithms predicted how ten factors affected Chl-a occurrence. We performed algorithms about decision tree, random forest, elastic net, gradient boosting with Python. The root mean square error (RMSE) value was used to evaluate excellent algorithms. The gradient boosting showed 10.55 of RMSE value for the Gangjeonggoryeong (GG) site and 11.43 of RMSE value for the Dalsung (DS) site. The gradient boosting algorithm showed excellent results for GG and DS sites. Prediction value for the four algorithms was also evaluated through the Receiver operating characteristic (ROC) curve and Area under curve (AUC). As a result of the evaluation, the AUC value was 0.877 at GG site and the AUC value was 0.951 at DS site. So the algorithm‘s ability to interpret seemed to be excellent.
여러 센서를 이용한 구조물의 구조 응답을 모니터링하는 사례가 증가하고 있다. 그러나 비용과 관리 문제로 인해 제한된 센서만이 구조물에 설치되어 일부의 구조 응답만을 수집하는 경우가 대부분이다. 이는 구조물의 전체 거동을 분석하는데 장애요소로 작용하게 된다. 따라서 제한된 센서를 이용해 센서가 설치되지 않은 위치에서의 응답을 신뢰할 수 있는 수준으로 예측하는 기술이 필요하다. 본 연구에서는 제한된 정보를 이용해 저층 건물 구조물의 지진 응답을 예측하는 해석적 연구를 수행한다. 활용 가능한 응답 정보는 1층과 최상층의 가속도 응답만을 사용할 수 있다고 가정한다. 두 정보를 이용하면 구조물의 1차 고유진동수를 얻을 수 있다. 1층 가속도 정보는 구조물의 가력 정보로 활용한다. 최상층의 가속도이력응답에 대한 오차와 대상 구조물의 1차 고유진동수 오차를 최소화하는 구조물의 질량과 강성 정보를 유전자알고리즘을 이용해 예측하는 기법을 제시한다. 제약조건은 고려하지 않는다. 탐색공간을 의미하는 설계변수의 범위를 결정하기 위해 인공신경망 기반의 파라미터 예측기법을 제시한다. 또한 유전자알고리즘을 통해 얻게 되는 해를 개선시키기 위해 앞서 언급한 인공신경망을 활용한다. 제시한 기법을 검증하기 위해 5층 구조물 예제를 사용한다.
In this study, the energy use of buildings was compared and analyzed by using weather data predicted with machine running techniques. Python was used as a predictive program to predict weather data and TRNSYS was used to simulate the energy usage of buildings. For weather forecasting, weather data from 1 August to 7 August were studied to forecast ambient air temperature and solar radiation. The lowest error came in seven days, with the outside air temperature standing at 1.8 percent and the solar radiation at 2.4 percent. The energy use of the building was simulated by using weather data predicted through the 7 days learning data with the lowest error. As a result , the error rate of cooling energy use was 1.92%, the sum of cooling energy and lighting energy use was 1.79%, and the building control by using predicted weather data didn’t show a big difference with just control.