검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        2.
        2018.05 서비스 종료(열람 제한)
        우리나라는 인구의 증가 및 도시의 산업화, 소비에 따른 축산업의 발달로 인해 하수처리 및 음식물류와 가축 분뇨폐기물인 유기성폐자원의 처리규모와 발생량이 매년 증가하는 추세이다. 유기성폐기물의 육상처리와 신재생 에너지원으로서 효과적 활용에 대한 정책 추진과 연구가 진행되어왔다. 매립, 소각을 포함한 육상처리 방법 중, 바이오가스화는 혐기소화 과정에서 신재생 에너지원인 메탄가스를 생산하는 시설로 현 상황에 대응하는 새로운 방안으로 각광받고 있다. 국내 유기성폐자원의 바이오가스화 시설은 신규설치가 많이 이루어지는 반면, 시설의 메탄가스 생산량이 아직 미흡하거나 생산된 바이오가스를 이용하지 못하는 경우가 많은 실정이며, 15년도 유기성폐자원 바이오가스화 시설 중 하수슬러지를 이용한 바이오가스 발생량은 10.99 m3/ton이며, 음식물 72 m3/ton, 가축분뇨 14.84 m3/ton, 병합처리 14.51 m3/ton을 생산하고 있어, 혐기소화효율이 미국 등 선진국대비 약 54.2%에 불과한 실정이다. 전국 8개 시설에 대해서 다양한 유기성폐자원의 원료유입에서 기원하는 유입에너지와 바이오가스화 설비 운전을 위한 전력 소비에너지를 유입에너지로 설정하고, 혐기소화를 통한 바이오메탄의 잠재에너지와 미분해 유기물의 잠재에너지를 유출에너지로 산정하여 에너지수지분석을 진행하였다. 음식물/음폐수 시설의 바이오가스 에너지전환율은 80.1%이며, 가축분뇨 86.5%, 하수슬러지 22.8~57.7%로 분석되었다. 유입원료의 생산효율로는 음식물/음폐수 시설이 72.2% 이상으로 분석되었고 일부 유입에너지의 과소평가 및 바이오가스 생산량 과다측정으로 이론적으로 불가능한 수치로도 분석되었다. 따라서 에너지수지분석은 에너지전환효율과 시설 효율과 시설 효율을 평가할 수 있는 중요한 수단이지만 정확한 측정을 위한 유량계측 표준화 및 설비 별 전력사용량을 확인할 수 있는 전력계측 표준화작업이 요구되어진다.
        3.
        2018.05 서비스 종료(열람 제한)
        최근 「녹색성장기본법」과 RPS 제도 등의 시행으로 화석연료에 의존하는 기존의 에너지 시장이 신・재생에너지 시장으로 변화되어감에 따라 국내 신・재생에너지 시장의 확대가 이루어지고 있다. 또한 에너지 자립의 측면에서 국내・외적으로 유기성폐자원 바이오가스화에 대한 관심이 증가하고 있는 실정이다. 이에 따라 각 정부부처는 유기성폐자원의 바이오가스화 처리의 확대를 추진 중에 있다. 하지만 다수의 자자체 및 단체에서 바이오 가스화 시설의 설치를 예정하고 있으나 설치 및 운영 인력들의 대한 바이오가스화 시설에 대한 전문성이 확보되지 않은 상태에서 설치 및 시설 운영으로 가동률 저하가 발생하고 있는 실정이다. 본 연구에서는 유기성폐자원 바이오가스화 부문 산업현황 조사와 바이오가스화 부문 업체 및 종사자 인원을 조사 및 전문인력 대상 설문조사를 통해 교육체계 개발의 타당성을 입증하였다. 또한 NCS 및 전문인력의 수행 및 요구 직무를 분석하여 유기성폐자원 바이오가스화 시설의 기획단계, 설계단계, 시공단계, 운영단계까지의 필요 교육내용과 교육체계를 단계별로 도출하였다. 유기성폐자원의 바이오가스화를 주도할 수 있는 전문인력을 양성하는 프로그램을 개발하는 것으로 목적으로 하고 있다. 현재 운영되고 있는 바이오가스 산업분야에 대한 현황을 조사, 분석하여 교육체계 프로그램을 개발하여 전문인력의 전문성 제고 방안을 마련하였다. 이로 인하여 유기성폐자원 바이오가스화 부문의 전문성이 확보되고 안정적인 유기성폐자원 바이오가스화 처리가 가능하여 바이오가스화 산업의 확대가 기대된다.
        4.
        2016.11 서비스 종료(열람 제한)
        최근 폐자원에너지를 이용한 신재생에너지의 활용에 대한 관심이 늘고 있는 추세이다. 유기성 폐자원의 경우 생성되는 메탄가스 및 가연성 가스를 이용한 가스발전이 가장 대표적인 활용 예이다. 그러나 폐자원으로부터 생성되는 가스는 생산량 조절이 어려움이 있다. 또한 가스 발전은 계속적으로 가동되어야 하기 때문에 전기사용량이 적은 심야에는 버려지는 가스가 존재한다. Energy Storage System (ESS)은 낭비되는 전기를 저장하였다가 필요한 요구가 있을 때 사용하는 장치로서 폐자원 에너지와 같은 신재생에너지 산업에 없어서는 안될 부분이다. 또한 에너지를 저장하는데 있어 어떠한 환경오염이나 CO2가 발생되지 않는 청정의 에너지 저가 요구된다. 이러한 ESS 중의 하나로, 바나듐 레독스 흐름 전지(Vanadium Redox Flow Batter)는 차세대 에너지 저장장치로서 기존의 리튬전지를 이용한 저장보다 에너지 수명이 10배 이상 길고, 환경에 무해한 물질을 사용하는 친환경적이 물질이다. 그러나 VRFB의 경우 낮은 에너지 밀도와 값비싼 분리막등 보완해야할 점들이 있다. 현재 사용되고 있는 Nafion 계열의 분리막의 경우 값비싼 가격과 활물질의 Crossover 현상을 막아주지 못하는 단점을 가지고 있는데 이를 polybenzimidazole로 구성된 분리막을 사용함으로서 분리막의 표면에 positively charged functional groups을 달아주어 Crossover를 막아주어 에너지효율과 밀도 모두 향상시킬 수 있었다.
        5.
        2015.11 서비스 종료(열람 제한)
        유기성 폐자원(음식물류 폐수, 가축분뇨, 하수슬러지 등)의 해양투기 금지 및 폐자원 바이오매스 에너지화 정책에 따라 유기성 폐자원 에너지화는 중요한 국가적 과제로 부각되고 있다. 유기성 폐자원 처리의 경우 단독 처리시설은 38개소, 병합처리시설은 17개소가 운영 중에 있으나 개소당 처리량은 병합처리시설이 더 많은 것으로 나타났다(단독처리시설: 198천톤/년; 병합처리시설: 345천톤/년). 가축분뇨의 경우 타 유기성 폐기물에 비해 C/N 비가 높고 유기물 함량(Volatile Solids, VS 기준)이 낮아 에너지 전환 효율이 낮은 것으로 보고되고 있다. 이에 반해 음식물류 폐수의 경우 유기물 함량이 높고 C/N 비가 낮다. 따라서 가축분뇨와 음식물류 폐수 병합처리 시 가축분뇨의 원료적 단점을 보완할 수 있다. 병합처리시설 중 음식물류 폐수와 가축분뇨 병합처리 시설은 총 5개소가 운영 중에 있으며 혼합 비율은 1:0.5 ~ 182.5 (음식물류 폐수 기준)로 넓은 범위로 나타났다. 또한 소화효율(VS 기준)은 15.1 ~ 95.1%로 넓은 분포를 나타내었다. 이렇듯 음식물류 폐수와 가축 분뇨의 적정 혼합 비율에 관한 연구는 미비한 실정이다. 따라서 본 연구에서는 음식물류 폐수와 가축분뇨의 병합 비율에 따른 유기물 특성(Excitation-Emission Matrix (EEM), SUVA254, SUVA280 등)과 메탄 잠재량을 평가하였다. SUVA254와 SUVA280분석 결과에 따르면 가축분뇨는 음식물류 폐수에 비해 각각 6.8 및 8.1배 높은 것으로 나타났다. 회분식 메탄 잠재량 평가 결과, 가축분뇨의 비율이 낮아질수록 최대 메탄 발생량은 증가되는 경향으로 나타났다. 그러나 혼합 비율 대비 시너지효과를 평가한 결과, 1:1.5 (음식물류 폐수 기준) 비율에서 14.9%로 가장 높게 나타났다.
        6.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        Results of reviews on bio-gas production and policy trends in the European Union (EU) are as follows. In the EU,Germany leads in bio-gas production with 29 TWh of energy produced through energy crops as of 2013. This could beachieved through renewable energy laws and increases in feed in tariff (FIT) schemes in Germany. In the EU, bio-gashas been verified to play an important role and contribute to greenhouse gas reduction. However, it is necessary to providea measure to improve sustainability criteria and decrease the consumer's share of expenses. If bio-gas is produced usingorganic wastes instead of energy crops, this problem can be solved. If the bio-gas production policies in the EU are appliedin South Korea, bio-gas market will be promoted and greenhouse gas emission can be reduced in the future.
        7.
        2015.04 KCI 등재 서비스 종료(열람 제한)
        Ocean dumping of all of the land waste was banned from 2014 by the London Convention. Therefore, the development of new technology to handle the huge amount of food waste are urgently sought. In particular, we were able to handle the garbage by using the Hermetia illucens by 2013 Presidential Decree. During this situation, we've been studied how to remove food waste by using Hermetia illucens as Environmentally harmless insect. In this study, four kinds of sample as a food waste, pork, bean-curd and boiled rice and mixed waste were selected. We tried to find efficiencies with different type we selected respectively. Efficiency of pretreated food waste with the form of the porridge was compared to rarefood waste efficiency.
        8.
        2014.11 서비스 종료(열람 제한)
        신재생에너지 공급량은 꾸준히 증가 추세에 있으며 이 중 바이오에너지는 1,334천 TOE로 15.1%에 해당한다. 바이오에너지는 생물유기체를 변환시켜 바이오디젤, 바이오에탄올, 바이오가스, 매립가스, 바이오액화유 등의 에너지원을 생산하는 것으로 특히, 바이오에너지 원별 발전량을 살펴보면 매립가스가 40.8%로 가장 큰 비중을 차지하고 있으며, 바이오가스는 3.8%에 해당하는 38 GWh가 발전에 사용되고 있다. 이번 연구에서는 바이오에너지 중 가스상에 해당하는 바이오가스와 매립가스에 중점을 두어 ‘35년까지의 에너지화 잠재량을 산정하고, 그 잠재량을 최대한 활용하기 위하여 현 여건에서의 방해인자 및 향후 개선 방향성을 제시하고자 한다. 이를 위하여 우선 유기성폐자원 별로 발생원의 특성이 다르고 발생량에 영향을 주는 인지가 각각 다르므로 해당 폐자원에 적합한 모형을 적용하여 발생량을 예측하였으며, 이를 바탕으로 단계별 잠재량 - 이론적 잠재량, 지리적 잠재량, 기술적 잠재량, 시장 잠재량 - 을 전망하였다. 폐자원 부문에서 이론적 잠재량이란 해당 폐기물이 모두 수거된다는 전제하에 확보할 수 있는 에너지 총량에 해당하며, 지리적 잠재량은 폐기물 수거율이나 폐자원에너지화 시설이 입지할 수 있는 지리적인 여건을 고려한 잠재량으로 물량 확보 측면이 반영된 것으로 볼 수 있다. 또한, 기술적 잠재량은 현재 기술 수준을 반영하여 에너지 효율 계수 및 가동율 등을 고려한 잠재량이며, 마지막으로 시장잠재량은 실질적으로 보급 가능한 잠재량으로 이미 재활용 등의 타 용도로 사용되고 있는 물량을 제외하고, 향후 정부의 에너지화 정책이나 기술 개발에 따른 비용단가 변화 등을 반영한 잠재량으로 정의할 수 있다. 본 연구에서는 유기성폐자원 (음식물류, 음폐수, 가축분뇨, 하수슬러지)와 매립가스 자원회수 잠재량을 각각 살펴보고 향후 정책적 여건을 반영한 방향성을 제시함으로써 폐자원의 적정 처리 및 고부가가치화를 달성하는 데 기여하고자 한다.